بيت » تقدير مونت كارلو لـ Pi

تقدير مونت كارلو لـ Pi

1950
Classroom demonstration of Monte Carlo method for estimating Pi in numerical analysis.

A classic illustration of the Monte Carlo method is estimating the value of [latex]\pi[/latex]. By inscribing a circle of radius [latex]r[/latex] within a square of side length [latex]2r[/latex], the ratio of their areas is [latex]\frac{\pi r^2}{(2r)^2} = \frac{\pi}{4}[/latex]. Randomly scattering points within the square and counting the fraction [latex]p[/latex] that fall inside the circle provides an estimate: [latex]\pi \approx 4p[/latex].

The procedure for estimating [مطاط]\pi[/latex] is straightforward and highlights the core Monte Carlo principle. Consider a unit square in the Cartesian plane with vertices at (0,0), (1,0), (1,1), and (0,1). A quarter circle of radius 1 is inscribed within this square, centered at the origin. The area of the square is 1, and the area of the quarter circle is [latex]\frac{\pi(1)^2}{4} = \frac{\pi}{4}[/latex]. The ratio of the quarter circle’s area to the square’s area is therefore [latex]\frac{\pi}{4}[/latex].

To estimate this ratio, we generate a large number, [latex]N[/latex], of random points [latex](x, y)[/latex] where both [latex]x[/latex] and [latex]y[/latex] are uniformly distributed between 0 and 1. Each point has an equal chance of landing anywhere within the square. A point [latex](x, y)[/latex] falls inside the quarter circle if its distance from the origin is less than or equal to 1, which is determined by the condition [latex]x^2 + y^2 \le 1[/latex]. We count the number of points, [latex]M[/latex], that satisfy this condition. The ratio [latex]\frac{M}{N}[/latex] is an estimate of the ratio of the areas, [latex]\frac{\pi}{4}[/latex]. Therefore, we can approximate [latex]\pi[/latex] as [latex]\pi \approx 4 \frac{M}{N}[/latex]. According to the law of large numbers, as [latex]N[/latex] approaches infinity, this approximation converges to the true value of [latex]\pi[/latex]. However, the convergence is slow, with the error decreasing proportionally to [latex]\frac{1}{\sqrt{N}}[/latex], making it a very inefficient الطريقة for calculating [latex]\pi[/latex] to high precision compared to deterministic algorithms.

UNESCO Nomenclature: 1202
– Computer sciences

النوع

البرنامج/الخوارزمية

الاضطراب

تزايدي

الاستخدام

الاستخدام الواسع النطاق

السلائف

  • concept of pi as the ratio of a circle’s circumference to its diameter
  • cartesian coordinate system
  • نظرية فيثاغورس
  • توزيع احتمالي موحد
  • تطوير مولدات الأرقام العشوائية الزائفة

التطبيقات

  • أداة تربوية لتدريس الاحتمالات والمحاكاة
  • معيار بسيط لمولدات الأرقام العشوائية
  • مشكلة تمهيدية في دورات العلوم الحاسوبية

براءات الاختراع:

NA

أفكار ابتكارات محتملة

!!مستويات !!! العضوية مطلوبة

يجب أن تكون عضوًا !!! مستويات!!! للوصول إلى هذا المحتوى.

انضم الآن

هل أنت عضو بالفعل؟ سجّل الدخول هنا
Related to: pi, estimation, Monte Carlo, simulation, random numbers, area, probability, numerical integration, circle, square.

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

متاح للتحديات الجديدة
مهندس ميكانيكي، مشروع، هندسة العمليات أو مدير البحث والتطوير
تطوير المنتج الفعال

متاح لتحدي جديد في غضون مهلة قصيرة.
تواصل معي على LinkedIn
تكامل الإلكترونيات المعدنية والبلاستيكية، التصميم مقابل التكلفة، ممارسات التصنيع الجيدة (GMP)، بيئة العمل، الأجهزة والمواد الاستهلاكية متوسطة إلى عالية الحجم، التصنيع المرن، الصناعات الخاضعة للتنظيم، شهادات CE وFDA، التصميم بمساعدة الحاسوب (CAD)، Solidworks، الحزام الأسود من Lean Sigma، شهادة ISO 13485 الطبية

نحن نبحث عن راعي جديد

 

هل شركتك أو مؤسستك متخصصة في التقنية أو العلوم أو الأبحاث؟
> أرسل لنا رسالة <

احصل على جميع المقالات الجديدة
مجاني، لا يوجد بريد عشوائي، ولا يتم توزيع البريد الإلكتروني ولا إعادة بيعه

أو يمكنك الحصول على عضويتك الكاملة -مجانًا- للوصول إلى جميع المحتويات المحظورة >هنا<

السياق التاريخي

(إذا كان التاريخ غير معروف أو غير ذي صلة، على سبيل المثال "ميكانيكا الموائع"، يتم تقديم تقدير تقريبي لظهوره الملحوظ)

الاختراع والابتكار والمبادئ التقنية ذات الصلة

انتقل إلى الأعلى

قد يعجبك أيضاً