بيت » Lithium-ion Intercalation Mechanism

Lithium-ion Intercalation Mechanism

1980
  • M. Stanley Whittingham
  • John B. Goodenough
  • Akira Yoshino

Lithium-ion batteries function via an intercalation mechanism, a reversible insertion of ions into a layered host material. During discharge, lithium ions ([latex]Li^+[/latex]) de-intercalate from a negative electrode (anode), typically graphite, and move through a non-aqueous electrolyte to intercalate into a positive electrode (cathode), typically a metal oxide. Electrons travel through the external circuit, creating current.

The concept of intercalation is central to the success of lithium-ion batteries. Unlike older battery chemistries where the electrodes undergo significant chemical phase changes, intercalation involves lithium ions acting as ‘guests’ that slide into and out of the ‘host’ crystalline structure of the electrode materials. For the anode, the host is typically graphite, which has a layered structure allowing [latex]Li^+[/latex] ions to fit between its graphene sheets, forming [latex]LiC_6[/latex]. For the cathode, the host is a metal oxide, such as lithium cobalt oxide ([latex]LiCoO_2[/latex]), where lithium ions occupy layers between cobalt oxide sheets.

This process is highly reversible and does not dramatically alter the host’s structure, which leads to a long cycle life with minimal degradation. The movement of ions is facilitated by a non-aqueous organic electrolyte, as lithium is highly reactive with water. A micro-porous polymer separator keeps the anode and cathode from touching and short-circuiting while allowing ions to pass through.

During charging, an external voltage forces the process to reverse: lithium ions are extracted from the cathode, travel back across the electrolyte, and re-insert into the graphite anode. The high electrochemical potential of lithium, combined with its low atomic weight, allows for batteries with very high energy density and specific energy, which is why they have revolutionized portable electronics and are enabling the transition to electric vehicles.

UNESCO Nomenclature: 2203
– Electrochemistry

النوع

Chemical Process

Disruption

Revolutionary

الاستخدام

Widespread Use

Precursors

  • Discovery of lithium metal and its high electrochemical potential
  • Fundamental research on intercalation compounds in the 1970s
  • Development of stable non-aqueous electrolytes
  • Early, unsafe prototypes of rechargeable lithium metal batteries

التطبيقات

  • smartphones, laptops, and tablets
  • electric vehicles (EVs)
  • cordless power tools and garden equipment
  • grid-scale energy storage systems
  • implantable medical devices and hearing aids

براءات الاختراع:

  • US4357215A

Potential Innovations Ideas

!!مستويات !!! العضوية مطلوبة

يجب أن تكون عضوًا !!! مستويات!!! للوصول إلى هذا المحتوى.

انضم الآن

هل أنت عضو بالفعل؟ سجّل الدخول هنا
Related to: lithium-ion, intercalation, anode, cathode, electrolyte, rechargeable, energy density, graphite

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

متاح للتحديات الجديدة
Mechanical Engineer, Project, Process Engineering or R&D Manager
تطوير المنتج الفعال

متاح لتحدي جديد في غضون مهلة قصيرة.
تواصل معي على LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

نحن نبحث عن راعي جديد

 

هل شركتك أو مؤسستك متخصصة في التقنية أو العلوم أو الأبحاث؟
> أرسل لنا رسالة <

احصل على جميع المقالات الجديدة
مجاني، لا يوجد بريد عشوائي، ولا يتم توزيع البريد الإلكتروني ولا إعادة بيعه

أو يمكنك الحصول على عضويتك الكاملة -مجانًا- للوصول إلى جميع المحتويات المحظورة >هنا<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

انتقل إلى الأعلى

قد يعجبك أيضاً