Electrochemical potential, [latex]\bar{\mu}_i[/latex], quantifies the total energy of a charged species `i` in a system. It combines the chemical potential, [latex]\mu_i[/latex], which accounts for concentration and intrinsic properties, with the electrostatic potential energy, [latex]z_i F \phi[/latex]. The formula is [latex]\bar{\mu}_i = \mu_i + z_i F \phi[/latex], where [latex]z_i[/latex] is the ion’s charge, [latex]F[/latex] is the Faraday constant, and [latex]phi[/latex] is the local electric potential.
The Fundamental Equation of Electrochemical Potential
- E. A. Guggenheim
The concept of electrochemical potential is a cornerstone of physical chemistry, extending the idea of chemical potential to systems involving charged species and electrical fields. The governing equation, [latex]bar{mu}_i = mu_i + z_i F phi[/latex], elegantly merges chemical and electrical driving forces into a single thermodynamic quantity. The first term, [latex]mu_i[/latex], is the chemical potential, representing the energy change associated with adding a mole of species `i` to a system, considering factors like concentration, temperature, and pressure. It is the driving force for diffusion from high to low concentration.
The second term, [latex]z_i F phi[/latex], represents the molar electrostatic potential energy. Here, [latex]z_i[/latex] is the dimensionless integer charge of the ion (e.g., +2 for [latex]Ca^{2+}[/latex]), [latex]F[/latex] is the Faraday constant (approximately 96,485 C/mol), which is the charge of one mole of electrons, and [latex]phi[/latex] is the local electric potential (Galvani potential). This term quantifies the work required to move a mole of ions against the local electric field.
Fundamentally, the electrochemical potential is the partial molar Gibbs free energy of the species `i`, expressed as [latex]bar{mu}_i = (frac{partial G}{partial n_i})_{T,P,n_{jneq i}}[/latex]. This means it represents the total work that can be extracted when one mole of the species is added to the system. The difference in electrochemical potential between two points dictates the direction of spontaneous movement for that ion, encompassing both diffusion down a concentration gradient and drift along an electric field.
النوع
Disruption
الاستخدام
Precursors
- Josiah Willard Gibbs’s work on chemical potential and Gibbs free energy
- Michael Faraday’s laws of electrolysis and the concept of the faraday constant
- Walther Nernst’s development of the Nernst equation
- the development of classical thermodynamics and electrostatics
التطبيقات
- batteries and fuel cells
- electroplating and corrosion science
- semiconductor physics (fermi level)
- neuroscience (nerve impulses)
- cellular bioenergetics (atp synthesis)
براءات الاختراع:
Potential Innovations Ideas
!!مستويات !!! العضوية مطلوبة
يجب أن تكون عضوًا !!! مستويات!!! للوصول إلى هذا المحتوى.
متاح للتحديات الجديدة
مهندس ميكانيكي، مدير مشروع أو بحث وتطوير
متاح لتحدي جديد في غضون مهلة قصيرة.
تواصل معي على LinkedIn
تكامل الإلكترونيات المعدنية والبلاستيكية، التصميم حسب التكلفة، ممارسات التصنيع الجيدة (GMP)، بيئة العمل، الأجهزة والمواد الاستهلاكية متوسطة إلى عالية الحجم، الصناعات الخاضعة للتنظيم، شهادات CE وFDA، التصميم بمساعدة الحاسوب (CAD)، Solidworks، الحزام الأسود Lean Sigma، شهادة ISO 13485 الطبية
احصل على جميع المقالات الجديدة
مجاني، لا يوجد بريد عشوائي، ولا يتم توزيع البريد الإلكتروني ولا إعادة بيعه
أو يمكنك الحصول على عضويتك الكاملة -مجانًا- للوصول إلى جميع المحتويات المحظورة >هنا<
Historical Context
The Fundamental Equation of Electrochemical Potential
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles