An affine variety is the set of points in an affine space whose coordinates are the common zeros of a finite set of polynomials. For a set of polynomials [latex]S = \{f_1, \dots, f_k\}[/latex] in a polynomial ring [latex]k[x_1, \dots, x_n][/latex], the corresponding affine variety is [latex]V(S) = \{x \in k^n | f(x) = 0 \text{ for all } f \in S\}[/latex]. It is a central object of study in classical algebraic geometry.
Affine Variety
An affine variety is the most fundamental object in classical algebraic geometry, directly generalizing the geometric idea of a solution set to a system of equations. The polynomials are defined over a field [latex]k[/latex], which is often taken to be algebraically closed, such as the field of complex numbers [latex]\mathbb{C}[/latex], to ensure a rich supply of points. The set of all affine varieties in a given affine space [latex]k^n[/latex] forms the closed sets of a topology, known as the Zariski topology. This topology is quite different from more familiar topologies like the Euclidean topology; for instance, it is not Hausdorff.
The crucial insight is the connection between these geometric objects (varieties) and algebraic objects (ideals in a polynomial ring). Specifically, every variety [latex]V(S)[/latex] corresponds to an ideal [latex]I(V(S))[/latex], which consists of all polynomials that vanish on every point of the variety. This correspondence is made precise by Hilbert’s Nullstellensatz, which establishes a bijection between affine varieties and radical ideals in the polynomial ring [latex]k[x_1, \dots, x_n][/latex]. This dictionary between algebra and geometry allows geometric problems to be translated into the language of commutative algebra, where powerful tools can be applied, and vice versa. For example, the dimension of a variety can be defined algebraically using the Krull dimension of its coordinate ring.
النوع
Disruption
الاستخدام
Precursors
- analytic geometry (descartes, fermat)
- theory of polynomial rings (hilbert, noether)
- ideal theory (dedekind, krull)
- elimination theory (sylvester, cayley)
التطبيقات
- cryptography (elliptic curve cryptography)
- الروبوتات (solving inverse kinematics equations)
- coding theory (algebraic geometry codes)
- computer-aided geometric design (cagd)
- statistics (algebraic statistics)
براءات الاختراع:
Potential Innovations Ideas
!!مستويات !!! العضوية مطلوبة
يجب أن تكون عضوًا !!! مستويات!!! للوصول إلى هذا المحتوى.
متاح للتحديات الجديدة
Mechanical Engineer, Project, Process Engineering or R&D Manager
متاح لتحدي جديد في غضون مهلة قصيرة.
تواصل معي على LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485
احصل على جميع المقالات الجديدة
مجاني، لا يوجد بريد عشوائي، ولا يتم توزيع البريد الإلكتروني ولا إعادة بيعه
أو يمكنك الحصول على عضويتك الكاملة -مجانًا- للوصول إلى جميع المحتويات المحظورة >هنا<
Historical Context
Affine Variety
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles