» 波动方程(物理学)

波动方程(物理学)

1747
  • Jean le Rond d’Alembert
Jean le Rond d'Alembert 在历史悠久的办公室环境中发展波方程。

(generate image for illustration only)

A second-order linear hyperbolic 偏微分 equation that governs the propagation of various types of waves. In its simplest form, it is written as [latex]\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u[/latex], where [latex]u(\vec{x},t)[/latex] is the amplitude of the wave, [latex]c[/latex] is the wave speed, and [latex]\nabla^2[/latex] is the Laplace operator. It models phenomena like vibrating strings, sound waves, and light waves.

The wave equation is the archetypal hyperbolic PDE. Unlike the 热方程, it is second-order in time, which gives rise to its oscillatory, wave-like solutions. The presence of the [latex]\frac{\partial^2 u}{\partial t^2}[/latex] term implies that acceleration is proportional to the local curvature of the function, a relationship characteristic of restorative forces like tension in a string. The constant [latex]c[/latex] represents the finite speed at which disturbances propagate through the medium.

A crucial feature of the wave equation is the principle of causality and finite propagation speed. A disturbance at a point [latex]\vec{x}_0[/latex] at time [latex]t_0[/latex] can only affect points [latex]\vec{x}[/latex] at a later time [latex]t[/latex] that are within a distance of [latex]c(t-t_0)[/latex]. This region is known as the ‘cone of influence’. Conversely, the value of the solution at [latex](\vec{x}, t)[/latex] depends only on the initial data within its ‘domain of dependence’. This contrasts sharply with the infinite propagation speed of the heat equation.

In one spatial dimension, the equation [latex]u_{tt} = c^2 u_{xx}[/latex] has a remarkably simple general solution, discovered by d’Alembert: [latex]u(x,t) = F(x-ct) + G(x+ct)[/latex]. This represents the superposition of two waves traveling in opposite directions with speed [latex]c[/latex]. The shapes of these waves, determined by the functions [latex]F[/latex] and [latex]G[/latex], are preserved as they propagate.

UNESCO Nomenclature: 1208
- 数学物理

类型

抽象系统

中断

基础

使用方法

广泛使用

前体

  • newton’s laws of motion
  • hooke’s law for elastic forces
  • 微积分和偏导数的发展
  • studies of vibrating strings by brook taylor and johann bernoulli

应用

  • 声学和音频工程
  • 电磁学(光和无线电波的传播)
  • 用于地震建模的地震学
  • 表面波的流体动力学
  • 引力波的广义相对论

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: wave equation, hyperbolic pde, d’alembert’s formula, wave propagation, acoustics, electromagnetism, speed of light, mathematical physics.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢