» 肖克利-奎塞尔极限

肖克利-奎塞尔极限

1961
  • William Shockley
  • Hans-Joachim Queisser
根据肖克利-奎塞尔极限分析单 p-n 结太阳能电池效率的研究实验室。

(generate image for illustration only)

肖克利-奎瑟极限是单pn结太阳能电池的最大理论效率。它仅考虑辐射复合和黑体辐射损耗。对于在标准太阳辐射(AM1.5G)下,最佳带隙为1.34 eV的单结电池,其最大效率约为33.7%。这一基本极限指导着太阳能电池的研究和设计。

The Shockley–Queisser (SQ) limit, also known as the detailed balance limit, provides a foundational ceiling on the energy conversion efficiency of solar cells. It is derived by analyzing the 热力学 balance between the energy absorbed from the sun and the energy lost by the cell. The model makes several key assumptions: the cell is a single p-n junction, it operates at a standard temperature (300 K), and it is illuminated by unconcentrated sunlight (AM1.5G spectrum).

The calculation accounts for several unavoidable loss mechanisms. First, photons with energy less than the semiconductor’s bandgap ([latex]E_g[/latex]) pass through the cell without being absorbed, contributing nothing to the current. Second, for photons with energy greater than the bandgap, the excess energy ([latex]E_{photon} – E_g[/latex]) is quickly lost as heat through thermalization, as the excited electron relaxes to the bottom of the conduction band. The voltage is thus limited by the bandgap, not the photon energy. The most significant loss mechanism considered in the SQ limit is radiative recombination. This is the reverse process of absorption, where an electron and hole recombine and emit a photon. In an ideal cell, this is the only recombination pathway. The cell, being at a non-zero temperature, also radiates energy as a black body.

By balancing the incoming photon flux from the sun with the outgoing flux from radiative recombination and black-body radiation, Shockley and Queisser derived the current-voltage characteristic of an ideal cell. The maximum power point on this curve defines the maximum efficiency. The efficiency is a strong function of the bandgap energy, peaking at ~33.7% for a bandgap of 1.34 eV, which is close to that of Gallium Arsenide (GaAs). For silicon ([latex]E_g \approx 1.12[/latex] eV), the limit is around 32%.

UNESCO Nomenclature: 2210
– Physics

类型

Theoretical Limit

中断

基础

使用方法

广泛使用

前体

  • planck’s law of black-body radiation
  • einstein’s work on the photoelectric effect and stimulated emission
  • 半导体pn结理论
  • thermodynamics principles, particularly the second law

应用

  • 单结太阳能电池性能基准
  • 多结太阳能电池的设计克服了限制
  • 热载流子和上转换/下转换太阳能电池的研究
  • 太阳能成本的经济模型

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: shockley-queisser limit, solar cell efficiency, thermodynamic limit, radiative recombination, bandgap, detailed balance, single-junction, black-body radiation.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢