» Rayleigh Scattering and Blue Sky

Rayleigh Scattering and Blue Sky

1871
  • John William Strutt, 3rd Baron Rayleigh
Blue sky illustrating Rayleigh scattering in optics and physics.

Rayleigh scattering is the elastic scattering of light by particles much smaller than the light’s wavelength. This phenomenon is responsible for the blue color of the daytime sky. Shorter, blue wavelengths of sunlight are scattered more effectively by the nitrogen and oxygen molecules in the atmosphere than longer, red wavelengths, causing the sky to appear blue from an observer’s perspective.

The intensity of Rayleigh scattering is strongly dependent on the wavelength of the light, following an inverse fourth-power law: [latex]I \\propto \\lambda^{-4}[/latex]. This means that blue light (with a shorter wavelength, ~475 nm) is scattered about 16 times more intensely than red light (~700 nm) by the gas molecules in the atmosphere. When we look at the sky away from the direct sun, our eyes perceive this scattered blue light coming from all directions. Conversely, when the sun is near the horizon at sunrise or sunset, its light must travel through a much longer path in the atmosphere to reach the observer. By the time it does, most of the blue and green light has been scattered away from the direct line of sight, leaving the longer-wavelength oranges and reds to be seen. This same principle explains why distant clouds or mountains can appear bluish. Rayleigh scattering is distinct from Mie scattering, which is caused by particles of a size comparable to or larger than the wavelength of light (like water droplets in clouds) and is not strongly wavelength-dependent, which is why clouds appear white.

UNESCO Nomenclature: 2209
– Optics

类型

物理现象

中断

基础

使用方法

广泛使用

前体

  • John Tyndall’s experiments on light scattering by aerosols (the Tyndall effect)
  • james clerk maxwell’s theory of electromagnetism
  • augustin-jean fresnel’s wave theory of light
  • understanding of the composition of earth’s atmosphere

应用

  • spectrophotometry
  • fiber optic communications (as a source of loss)
  • remote sensing and lidar
  • computer graphics for realistic atmospheric rendering
  • nephelometry (measuring particle concentration in liquids/gases)
  • explanation of sunset and sunrise colors

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: Rayleigh scattering, blue sky, atmospheric optics, light scattering, wavelength, electromagnetic radiation, nitrogen, oxygen, Lord Rayleigh, sunset color.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢