» 勾股定理

勾股定理

-550
  • Pythagoras of Samos
说明几何中勾股定理的直角三角形。

(generate image for illustration only)

勾股定理是欧几里得几何中直角三角形三边之间的基本关系。它指出,边为斜边(直角对边)的正方形的面积等于其他两条边上的正方形面积之和。该公式表示为 [latex]a^2 + b^2 = c^2[/latex]。

While the theorem is named after the Greek mathematician Pythagoras, evidence suggests that the relationship was known to earlier civilizations, including the Babylonians and Egyptians, who used it for practical purposes like surveying and construction. However, the Pythagoreans are credited with the first formal proof of the theorem, elevating it from a practical observation to a mathematical certainty within a deductive system. There are hundreds of known proofs for the theorem, some geometric and some algebraic, demonstrating its deep and multifaceted nature.

The theorem is a special case of the more general law of cosines, [latex]c^2 = a^2 + b^2 – 2ab\cos(\gamma)[/latex], which relates the lengths of the sides of any triangle. When the angle [latex]\gamma[/latex] is a right angle (90 degrees or [latex]\pi/2[/latex] radians), its cosine is 0, and the formula simplifies to the Pythagorean theorem. The theorem also defines the Euclidean distance between two points in a Cartesian coordinate system. If two points have coordinates [latex](x_1, y_1)[/latex] and [latex](x_2, y_2)[/latex], the distance [latex]d[/latex] between them is given by [latex]d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}[/latex], which is a direct application of the theorem.

UNESCO Nomenclature: 1204
- 几何学

类型

抽象系统

中断

基础

使用方法

广泛使用

前体

  • Babylonian clay tablets (e.g., Plimpton 322) showing knowledge of Pythagorean triples
  • Egyptian rope-stretching techniques for creating right angles in construction
  • Early Greek geometric concepts of lines, angles, and areas

应用

  • construction and carpentry (e.g., ensuring square corners)
  • navigation and triangulation for determining location
  • physics calculations involving vectors
  • computer graphics for distance calculations
  • forensic science for crime scene reconstruction

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: Pythagorean theorem, right-angled triangle, hypotenuse, Euclidean distance, geometry, trigonometry, a^2+b^2=c^2, proof.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢