Passivation is the process by which a material becomes ‘passive,’ meaning it is less affected by environmental factors such as corrosion. It involves the spontaneous formation of a very thin, non-reactive surface film that acts as a barrier, shielding the bulk material from further attack. This film is typically an oxide or nitride layer, a few nanometers thick.
Passivation
- Christian Friedrich Schönbein
The mechanism of passivation is electrochemical. When a reactive metal like chromium, aluminum, or 钛 is exposed to an oxidizing environment (like air or certain acids), its surface rapidly oxidizes. If the resulting metal oxide is stable, dense, non-porous, and well-adhered to the metal surface, it forms a protective passive layer. This layer is extremely thin, often only 1-3 nanometers, but it is sufficient to dramatically slow down the rate of corrosion by preventing direct contact between the metal and the corrosive environment.
The stability of this passive film is dependent on the environment, particularly pH and the presence of certain ions like chlorides. For example, the chromium oxide ([latex]Cr_2O_3[/latex]) layer on stainless steel is highly effective in many environments but can be locally broken down by chloride ions, leading to pitting corrosion. The breakdown and reformation of this passive layer is a dynamic process. If the film is mechanically scratched or damaged, the exposed metal will often repassivate almost instantly, a property known as self-healing.
Passivation can be a natural process or can be enhanced artificially through chemical treatments, such as dipping stainless steel in nitric or citric acid to remove free iron from the surface and encourage the formation of a more robust chromium-rich oxide layer. This process is distinct from applying a 涂层, as the passive layer is formed from the base metal itself.
类型
Disruption
使用方法
Precursors
- Discovery of reactive metals like chromium and aluminum
- Early observations of metals resisting corrosion in specific acids
- Development of electrochemical theories
应用
- stainless steel’s 耐腐蚀性 (chromium oxide layer)
- titanium’s biocompatibility in medical implants (titanium dioxide layer)
- anodizing of aluminum for protection and color
- protecting silicon wafers in microelectronics
专利:
迎接新挑战
机械工程师、项目或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
Passivation
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles