A key prediction of general relativity is that time passes at different rates in different gravitational potentials. A clock in a stronger gravitational field (closer to a massive object) will tick slower than a clock in a weaker field. This effect, known as gravitational time dilation, has been experimentally verified and is a crucial factor in modern technology like GPS.
Gravitational Time Dilation
- Albert Einstein
Gravitational time dilation arises from the principle that the rate at which time passes is influenced by the curvature of spacetime. In a region of stronger gravity, the ‘flow’ of time itself is slower relative to a region of weaker gravity. This is not a mechanical effect on clocks but an actual difference in the passage of time. For example, a clock at sea level runs slightly slower than an identical clock on a mountain. The formula for this effect for a non-rotating, spherically symmetric mass is [latex]t_f = t_0 \\sqrt{1 – \\frac{2GM}{rc^2}}[/latex], where [latex]t_f[/latex] is the time for the distant observer and [latex]t_0[/latex] is the time in the gravitational field.
This effect was first confirmed experimentally by the Pound-Rebka experiment in 1959, which measured the gravitational redshift of photons (a related phenomenon). The most significant real-world application is the Global Positioning System (GPS). The atomic clocks on GPS satellites are in a weaker gravitational field than clocks on Earth’s surface, so they run faster by about 45 microseconds per day. They also experience special relativistic time dilation due to their high velocity, making them run slower by about 7 microseconds per day. The net effect is that GPS satellite clocks run faster by about 38 microseconds daily. Without correcting for this, GPS navigation errors would accumulate at about 10 kilometers per day, rendering the system useless.
类型
Disruption
使用方法
Precursors
- Special relativity and its concept of time dilation due to velocity
- Equivalence principle
- Minkowski spacetime
应用
- global positioning system (GPS) satellites require corrections for both special and general relativistic time dilation to function accurately
- precise timekeeping with atomic clocks
- understanding the physics of black holes and neutron stars
- astronomical observation of gravitational redshift
专利:
迎接新挑战
机械工程师、项目或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
Related Invention, Innovation & Technical Principles