A fundamental theorem in Euclidean geometry states that the sum of the measures of the three interior angles of any triangle is always equal to two right angles, or 180 degrees. This property, [latex]\alpha + \beta + \gamma = 180^\circ[/latex], is a direct consequence of the parallel postulate and holds true for all triangles, regardless of their size or shape, within a flat, Euclidean plane.
Triangle Angle Sum Theorem
- Euclid of Alexandria
The proof of the triangle angle sum theorem is a classic example of deductive reasoning in Euclidean geometry and relies critically on the parallel postulate. To prove it, one can draw a line through one vertex of the triangle that is parallel to the opposite side. Because of the properties of parallel lines intersected by a transversal (the other two sides of the triangle), the alternate interior angles are equal. The three angles at the vertex on the straight line—two of which are equal to the other two angles of the triangle—sum to 180 degrees, as they form a straight angle. Therefore, the three interior angles of the triangle must also sum to 180 degrees.
This theorem is a defining characteristic of Euclidean space. In non-Euclidean geometries, this property does not hold. In hyperbolic geometry (with negative curvature, like a saddle), the sum of angles in a triangle is always less than 180 degrees. In elliptic or spherical geometry (with positive curvature, like the surface of a sphere), the sum is always greater than 180 degrees. This makes the angle sum of a triangle a simple test for the nature of the space it inhabits, a concept that became crucial in physics with the advent of general relativity.
Tipo
Disruption
Utilización
Precursors
- Euclid’s Parallel Postulate
- Concepts of angles and parallel lines from earlier Greek mathematics
- The axiomatic method established in Euclid’s Elements
Aplicaciones
- surveying and geodesy for calculating distances and positions
- astronomy for measuring stellar parallax
- architecture for designing stable truss structures
- computer graphics for rendering 3d models
- navigation for plotting courses
Patentes:
Potential Innovations Ideas
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Historical Context
Triangle Angle Sum Theorem
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles