Hogar » Gauss’s Theorema Egregium

Gauss’s Theorema Egregium

1827
  • Carl Friedrich Gauss

Theorema Egregium (Latin for “Remarkable Theorem”) states that the Gaussian curvature of a surface is an intrinsic property. This means it depends only on how distances are measured on the surface itself, not on how the surface is embedded in three-dimensional space. A flat sheet of paper can be rolled into a cylinder but not a sphere without stretching.

Gauss’s Theorema Egregium is a cornerstone of differential geometry. Before Gauss, curvature was typically understood extrinsically, relating to how a surface bends within the ambient 3D space. Gauss discovered a way to compute the curvature using only information available to an imaginary two-dimensional being living on the surface. This intrinsic measure is now called Gaussian curvature.

He showed that the Gaussian curvature [latex]K[/latex] could be expressed entirely in terms of the coefficients of the first fundamental form ([latex]E, F, G[/latex]) and their derivatives. The first fundamental form, [latex]ds^2 = E du^2 + 2F du dv + G dv^2[/latex], defines the metric of the surface—it tells how to measure lengths of curves. Since the metric is intrinsic, the curvature must be as well. This was a profound shift in perspective.

The theorem’s practical implication is that any two surfaces that can be transformed into one another without stretching or tearing (an isometry) must have the same Gaussian curvature at corresponding points. For example, a plane has zero curvature. Since a cylinder can be made by rolling up a plane without distortion, it also has zero Gaussian curvature. A sphere, however, has constant positive curvature, which is why it’s impossible to flatten an orange peel without breaking it. This concept was later generalized by Riemann to higher dimensions, paving the way for Einstein’s theory of general relativity.

UNESCO Nomenclature: 1204
– Geometry

Tipo

Abstract System

Disruption

Revolutionary

Utilización

Widespread Use

Precursors

  • Euclidean geometry
  • Theory of curves and surfaces
  • Development of calculus by Newton and Leibniz
  • First fundamental form

Aplicaciones

  • cartography (explains why no flat map of the earth can be perfectly accurate)
  • general relativity (curvature of spacetime is intrinsic)
  • structural engineering (designing shells and curved structures)
  • computer graphics (for texture mapping and surface parameterization)

Patentes:

ESO

Potential Innovations Ideas

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: gaussian curvature, intrinsic geometry, theorema egregium, first fundamental form, isometry, surfaces, metric, Gauss

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Scroll al inicio

También te puede interesar