A Newtonian fluid’s shear stress is directly proportional to the rate of shear strain. This linear relationship is defined by Newton’s law of viscosity: [latex]\tau = \mu \frac{du}{dy}[/latex], where [latex]\tau[/latex] is the shear stress, [latex]\mu[/latex] is the dynamic viscosity (a constant of proportionality), and [latex]\frac{du}{dy}[/latex] is the shear rate or velocity gradient.
Newton’s Law of Viscosity
- Isaac Newton
Newton’s law of viscosity establishes the fundamental constitutive equation for a Newtonian fluid. It postulates that for a simple shear flow, the force per unit area (shear stress, [latex]\tau[/latex]) required to move one layer of fluid relative to another is proportional to the rate at which the velocity changes with distance perpendicular to the flow (the velocity gradient or shear rate, [latex]\frac{du}{dy}[/latex]). The constant of proportionality, [latex]\mu[/latex], is known as the dynamic viscosity, a material property that measures the fluid’s resistance to flow. For a Newtonian fluid, this viscosity is constant and depends only on temperature and pressure, not on the forces acting upon it.
This linear model is an idealization but accurately describes many common fluids like water, air, and simple oils under typical conditions. The concept is foundational to fluid dynamics, allowing for the derivation of the Navier-Stokes equations, which govern the motion of viscous fluid substances. The law implies that a Newtonian fluid will begin to flow immediately upon the application of any shear stress, no matter how small. This contrasts with non-Newtonian fluids, which may exhibit shear-thinning, shear-thickening, or require a minimum yield stress before flowing.
Historically, Isaac Newton proposed this relationship in his 1687 *Philosophiæ Naturalis Principia Mathematica*. He did not express it in the modern differential form but described the concept of a “defect of lubricity” or internal friction in fluids. The modern mathematical formulation was developed later by mathematicians and physicists like Cauchy and Stokes, who incorporated it into a more general estructura for continuum mecánica.
Tipo
Disruption
Utilización
Precursors
- Evangelista Torricelli’s work on fluid efflux (Torricelli’s Law)
- Blaise Pascal’s principles of hydrostatics (Pascal’s Law)
- Isaac Newton’s laws of motion
- Development of calculus by Newton and Leibniz
Aplicaciones
- design of pipelines for water and oil transport
- aerodynamic analysis of wings and vehicle bodies
- lubrication theory for bearings and gears
- modeling of weather patterns and ocean currents
- proceso químico engineering for mixing and reaction vessels
Patentes:
Potential Innovations Ideas
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Related Invention, Innovation & Technical Principles