A Single-Electron Transistor (SET) is a switching device that uses controlled electron tunneling to manipulate the flow of single electrons. It consists of a quantum dot (the ‘island’) coupled to source and drain leads via tunnel junctions, and capacitively coupled to a gate electrode. Its operation relies on the Coulomb blockade effect, enabling extreme sensitivity and low power consumption.
Single-Electron Transistor (SET)
- Dmitri Averin
- Konstantin Likharev
The Single-Electron Transistor (SET) operates based on a quantum mechanical effect called the Coulomb blockade. This effect occurs in a very small conductive island (a quantum dot) connected to source and drain electrodes through two tunnel junctions. For an electron to tunnel onto the island, it must overcome the electrostatic repulsion from the electrons already present. This requires a charging energy, [latex]E_C = e^2 / (2C)[/latex], where [latex]e[/latex] is the elementary charge and [latex]C[/latex] is the total capacitance of the island. For the Coulomb blockade to be observable, this charging energy must be significantly larger than the thermal energy, [latex]k_B T[/latex], which necessitates cryogenic temperatures and/or extremely small island capacitance (fF or aF).
A gate electrode is capacitively coupled to the island. By applying a voltage [latex]V_g[/latex] to the gate, the electrostatic potential of the island can be precisely tuned. This gate voltage can be adjusted to overcome the Coulomb blockade, allowing a single electron to tunnel from the source onto the island, and then from the island to the drain. This process can be repeated one electron at a time. The current through the SET thus exhibits sharp peaks (Coulomb oscillations) as a function of the gate voltage, with each peak corresponding to the addition of one electron to the island. This makes the SET an extremely sensitive electrometer, capable of detecting fractions of an elementary charge.
While SETs offer unparalleled sensitivity and potential for ultra-low power logic, their practical application in large-scale circuits is hindered by several challenges. The requirement for very low temperatures is a major obstacle for consumer electronics. Furthermore, their performance is highly sensitive to random background charges in the surrounding substrate, which can unpredictably shift the gate voltage characteristics. Fabricating large arrays of identical SETs with high yield is also extremely difficult. Despite these hurdles, they remain a vital tool in fundamental physics research and are actively being explored for niche applications like quantum information processing, where the charge state of a quantum dot can represent a qubit.
类型
Disruption
使用方法
Precursors
- discovery of the electron
- concept of quantum tunneling
- invention of the field-effect transistor (FET)
- development of quantum dots
- theory of coulomb blockade
应用
- highly sensitive electrometers
- single-photon detectors
- research in quantum computing (qubits)
- low-temperature physics experiments
- metrology 标准 for electric current
专利:
迎接新挑战
机械工程师、项目或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
Historical Context
Single-Electron Transistor (SET)
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles