» 薛定谔方程

薛定谔方程

1926
  • Erwin Schrödinger
物理学家的工作区,配有薛定谔方程和量子力学材料。

This is a fundamental equation in quantum 力学 that describes how the quantum state of a physical system changes over time. It is a linear partial differential equation for the wavefunction, [latex]\Psi(x, t)[/latex]. The time-dependent version is [latex]i\hbar\frac{\partial}{\partial t}\Psi = \hat{H}\Psi[/latex], where [latex]\hat{H}[/latex] is the Hamiltonian operator, representing the total energy of the system.

The Schrödinger equation is the quantum mechanical counterpart to Newton’s second law in classical mechanics. While Newton’s law predicts the trajectory of a particle, the Schrödinger equation predicts the future behavior of a system’s wavefunction. The wavefunction, [latex]\Psi[/latex], is a complex-valued probability amplitude, and the square of its magnitude, [latex]|\Psi|^2[/latex], gives the probability density of finding the particle at a given position and time. The equation comes in two main forms: time-dependent and time-independent.

The time-dependent Schrödinger equation (TDSE), [latex]i\hbar\frac{\partial}{\partial t}\Psi(x, t) = \hat{H}\Psi(x, t)[/latex], describes a system evolving in time. The time-independent Schrödinger equation (TISE), [latex]\hat{H}\Psi(x) = E\Psi(x)[/latex], is used for systems in a stationary state, where the energy [latex]E[/latex] is constant. Solving the TISE for a given potential yields the allowed energy eigenvalues ([latex]E[/latex]) and the corresponding energy eigenfunctions ([latex]\Psi[/latex]), which represent the stable states of the system, such as the electron orbitals in an atom. The Hamiltonian operator [latex]\hat{H}[/latex] is constructed from the classical expression for the total energy (kinetic plus potential) by replacing classical variables with their corresponding quantum operators. For a single non-relativistic particle, [latex]\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + V(x, t)[/latex].

UNESCO Nomenclature: 2210
- 量子物理学

类型

抽象系统

中断

革命

使用方法

广泛使用

前体

  • 哈密​​顿力学(1833年)
  • De Broglie’s wave-particle duality hypothesis (1924)
  • Matrix mechanics (Heisenberg, 1925)
  • 经典波动方程

应用

  • 预测原子和分子轨道(量子化学)
  • 设计半导体器件
  • 模拟核反应
  • 了解超导性
  • 量子计算算法设计

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: Schrödinger equation, wavefunction, Hamiltonian operator, quantum state, partial differential equation, quantum mechanics, probability amplitude, energy levels.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢