» 量子隧道

量子隧道

1927
  • Friedrich Hund
在实验室环境中展示量子隧道原理的扫描隧道显微镜。

(generate image for illustration only)

A quantum mechanical phenomenon where a wavefunction can propagate through a potential energy barrier. Classically, a particle lacking sufficient energy to surmount a barrier would be reflected. However, due to the wave-like nature of particles, there is a non-zero probability that the particle can appear on the other side of the barrier, effectively ‘tunneling’ through it.

Quantum tunneling is a direct consequence of the Heisenberg uncertainty principle and the probabilistic nature of a particle’s location described by its wavefunction. When a particle’s wavefunction encounters a potential barrier, it does not abruptly drop to zero. Instead, it decays exponentially inside the barrier. If the barrier is thin enough, the wavefunction can have a small but non-zero amplitude on the other side. Since the probability of finding the particle is related to the square of the wavefunction’s amplitude, there is a finite probability of the particle being detected on the far side of the barrier.

The probability of tunneling decreases exponentially with the thickness of the barrier and the square root of the barrier’s height and the particle’s mass. This is why tunneling is significant for microscopic particles like electrons but negligible for macroscopic objects. For example, in nuclear fusion within the Sun, protons do not have enough thermal energy to overcome their mutual electrostatic repulsion (the Coulomb barrier). Fusion is only possible because the protons can tunnel through this barrier, allowing the strong nuclear force to bind them together. Similarly, the scanning tunneling microscope (STM) works by measuring the tunneling current of electrons between a sharp metallic tip and a sample surface, allowing for imaging with atomic resolution.

UNESCO Nomenclature: 2210
- 量子物理学

类型

抽象系统

中断

实质性

使用方法

广泛使用

前体

  • Schrödinger equation (1926)
  • Wave-particle duality
  • Studies of radioactivity (alpha decay)
  • Heisenberg uncertainty principle (1927)

应用

  • scanning tunneling microscope (STM)
  • tunnel diodes in electronics
  • flash memory (floating-gate transistors)
  • nuclear fusion in stars
  • alpha decay of atomic nuclei

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: quantum tunneling, wavefunction, potential barrier, scanning tunneling microscope, nuclear fusion, alpha decay, quantum mechanics, probability.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢