» Passivation

Passivation

1850
  • Christian Friedrich Schönbein

Passivation is the process by which a material becomes ‘passive,’ meaning it is less affected by environmental factors such as corrosion. It involves the spontaneous formation of a very thin, non-reactive surface film that acts as a barrier, shielding the bulk material from further attack. This film is typically an oxide or nitride layer, a few nanometers thick.

The mechanism of passivation is electrochemical. When a reactive metal like chromium, aluminum, or is exposed to an oxidizing environment (like air or certain acids), its surface rapidly oxidizes. If the resulting metal oxide is stable, dense, non-porous, and well-adhered to the metal surface, it forms a protective passive layer. This layer is extremely thin, often only 1-3 nanometers, but it is sufficient to dramatically slow down the rate of corrosion by preventing direct contact between the metal and the corrosive environment.

The stability of this passive film is dependent on the environment, particularly pH and the presence of certain ions like chlorides. For example, the chromium oxide ([latex]Cr_2O_3[/latex]) layer on stainless steel is highly effective in many environments but can be locally broken down by chloride ions, leading to pitting corrosion. The breakdown and reformation of this passive layer is a dynamic process. If the film is mechanically scratched or damaged, the exposed metal will often repassivate almost instantly, a property known as self-healing.

Passivation can be a natural process or can be enhanced artificially through chemical treatments, such as dipping stainless steel in nitric or citric acid to remove free iron from the surface and encourage the formation of a more robust chromium-rich oxide layer. This process is distinct from applying a 涂层, as the passive layer is formed from the base metal itself.

UNESCO Nomenclature: 3314
– Materials science

类型

Chemical Process

Disruption

Foundational

使用方法

Widespread Use

Precursors

  • Discovery of reactive metals like chromium and aluminum
  • Early observations of metals resisting corrosion in specific acids
  • Development of electrochemical theories

应用

  • stainless steel’s 耐腐蚀性 (chromium oxide layer)
  • titanium’s biocompatibility in medical implants (titanium dioxide layer)
  • anodizing of aluminum for protection and color
  • protecting silicon wafers in microelectronics

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: passivation, passive film, corrosion resistance, stainless steel, chromium oxide, titanium, anodizing, surface science

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢