» HEPA and ULPA Filtration

HEPA and ULPA Filtration

1940

High-Efficiency Particulate Air (HEPA) and Ultra-Low Particulate Air (ULPA) filters are critical cleanroom components. A HEPA filter must remove at least 99.97% of airborne particles 0.3 micrometers (µm) in diameter. An ULPA filter is even more efficient, removing 99.999% of particles 0.12 µm or larger. They work via a combination of interception, impaction, and diffusion.

The effectiveness of HEPA and ULPA filters is defined by their performance at their Most Penetrating Particle Size (MPPS). For HEPA filters, this is typically 0.3 µm. Particles larger than the MPPS are trapped primarily by inertial impaction (colliding with fibers due to their inertia) and interception (getting stuck on fibers as they follow the airstream). Conversely, very small particles (typically <0.1 µm) are trapped by diffusion, where their random, erratic Brownian motion causes them to collide with filter fibers. The 0.3 µm size represents a ‘valley’ in efficiency where none of these three mechanisms are dominant, making it the most difficult particle size to capture. Therefore, a filter’s rating is based on its worst-case performance at this MPPS.

ULPA filters are an extension of this technology, designed for even more stringent contamination control. They target an MPPS around 0.1-0.12 µm and achieve efficiencies of 99.999% or greater. These filters are constructed from a dense mat of randomly arranged borosilicate glass fibers. The air velocity, fiber diameter, and packing density are precisely controlled during 制造业 to achieve the desired performance. In a cleanroom, these filters are installed in terminal housings or as part of a fan-filter unit (FFU), and their seals are critical. Regular testing, such as Dispersed Oil Particulate (DOP) testing, is performed to verify the integrity of the filter media and the seal to ensure no contaminated air bypasses the filter.

UNESCO Nomenclature: 3307
– Environmental engineering

类型

Physical Device

Disruption

Foundational

使用方法

Widespread Use

Precursors

  • research into gas masks during World War I
  • the Manhattan Project’s need to filter radioactive particles
  • advances in glass fiber manufacturing
  • understanding of aerosol physics and Brownian motion

应用

  • cleanrooms for manufacturing and research
  • biological safety cabinets
  • hospital operating rooms and isolation units
  • nuclear facilities
  • high-end vacuum cleaners and air purifiers

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: HEPA, ULPA, filtration, air filter, particle capture, contamination control, MPPS, cleanroom technology

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢