要同时完全准确地知道粒子的某些互补物理特性对是不可能的。最常见的例子是位置 [latex]x[/latex] 和动量 [latex]p[/latex]。该原则规定,它们的不确定性的乘积 [latex]\Delta x[/latex] 和 [latex]\Delta p[/latex] 必须大于或等于一个特定值:[latex]\Delta x \Delta p \ge \frac\{hbar}{2}[/latex].

(generate image for illustration only)
要同时完全准确地知道粒子的某些互补物理特性对是不可能的。最常见的例子是位置 [latex]x[/latex] 和动量 [latex]p[/latex]。该原则规定,它们的不确定性的乘积 [latex]\Delta x[/latex] 和 [latex]\Delta p[/latex] 必须大于或等于一个特定值:[latex]\Delta x \Delta p \ge \frac\{hbar}{2}[/latex].
The Heisenberg Uncertainty Principle is a fundamental tenet of quantum mechanics, not a statement about the limitations of measurement technology. It reflects an inherent property of quantum systems. The principle arises from the wave-like nature of all quantum objects. A particle’s position and momentum are described by its wavefunction. A wavefunction that is highly localized in space (small [latex]\Delta x[/latex]) is necessarily composed of a wide superposition of many different momentum waves, resulting in a large uncertainty in momentum (large [latex]\Delta p[/latex]). Conversely, a wavefunction with a well-defined momentum (small [latex]\Delta p[/latex]) must be a spatially spread-out wave, leading to a large uncertainty in position (large [latex]\Delta x[/latex]).
The principle applies to any pair of ‘conjugate variables,’ which are related through 傅立叶 transforms in the mathematical formalism of quantum mechanics. Another important pair is energy ([latex]E[/latex]) and time ([latex]t[/latex]), with the relation [latex]\Delta E \Delta t \ge \frac{\hbar}{2}[/latex]. This implies that the energy of a state that exists for only a short time cannot be precisely determined. This has profound consequences, such as allowing for the temporary creation of ‘virtual particles’ in quantum field theory, which mediate fundamental forces. The uncertainty principle fundamentally limits the determinism envisioned by classical physics, replacing it with a probabilistic description of nature at the smallest scales.
迎接新挑战
机械工程师、项目、工艺工程师或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
海森堡不确定性原理
(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。
相关发明、创新和技术原理
{{标题}}
{%,如果摘录 %}{{ 摘录 | truncatewords:55 }}
{% endif %}