» Courant–Friedrichs–Lewy Condition

Courant–Friedrichs–Lewy Condition

1928
  • Richard Courant
  • Kurt Friedrichs
  • Hans Lewy

The Courant–Friedrichs–Lewy (CFL) condition is a necessary stability criterion for numerical solutions of hyperbolic partial differential equations using explicit time-integration schemes. It dictates that the time step size must be small enough that information does not travel further than one spatial grid cell per time step. For a 1D case, [latex]C = u \frac{\Delta t}{\Delta x} \le C_{max}[/latex], ensuring numerical stability.

The CFL condition is a fundamental concept governing the stability of explicit time-marching numerical methods. It arises from the principle that the numerical domain of dependence of a grid point must contain the physical domain of dependence. In simpler terms, for a calculation at a grid point (i) at the next time step (n+1), the numerical scheme uses information from neighboring points at the current time step (n). The CFL condition ensures that any physical phenomenon (like a pressure wave) that could have reached point (i) in the time interval [latex]\Delta t[/latex] must have originated from within that set of neighboring points.

In the formula [latex]C = \frac{u \Delta t}{\Delta x} \le C_{max}[/latex], [latex]C[/latex] is the dimensionless Courant number, [latex]u[/latex] is the maximum wave propagation speed in the system (e.g., fluid velocity plus the speed of sound for compressible flow), [latex]\Delta t[/latex] is the time step, and [latex]\Delta x[/latex] is the grid spacing. The value of [latex]C_{max}[/latex] depends on the specific numerical scheme but is often on the order of 1. If the condition is violated ([latex]C > C_{max}[/latex]), the numerical solution becomes unstable, with errors growing exponentially, leading to a non-physical, divergent result. This imposes a severe restriction on the time step size, especially in meshes with very fine cells ([latex]\Delta x[/latex] is small), making explicit methods computationally expensive for certain problems. Implicit methods, while more complex per time step, are often unconditionally stable and not subject to the CFL constraint, allowing for much larger time steps.

UNESCO Nomenclature: 1208
– Numerical Analysis

类型

Abstract System

Disruption

Foundational

使用方法

Widespread Use

Precursors

  • Finite Difference 方法
  • Theory of Partial Differential Equations (specifically hyperbolic equations)
  • Concept of numerical stability and convergence
  • Von Neumann stability analysis

应用

  • ensuring stability in weather prediction models
  • controlling time step size in aerodynamic simulations
  • simulating wave propagation in acoustics and electromagnetics
  • financial modeling of options pricing using explicit finite difference methods
  • seismic wave modeling for oil and gas exploration
  • simulations in plasma physics and astrophysics

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: cfl condition, numerical stability, explicit method, time-marching, hyperbolic pde, courant number, time step, convergence

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢