The alpha-helix ([latex]\alpha[/latex]-helix) is a common secondary structure motif in proteins. It is a right-handed coiled conformation in which every backbone N-H group donates a hydrogen bond to the backbone C=O group of the amino acid located four residues earlier ([latex]i+4 \rightarrow i[/latex] hydrogen bonding). This regular pattern pulls the polypeptide chain into a helical shape.
The Alpha-Helix (biochemistry)
- Linus Pauling
- Robert Corey
- Herman Branson
Linus Pauling and his colleagues predicted the existence of the alpha-helix in 1951 before it was experimentally observed in detail by Max Perutz in the structure of myoglobin. Their prediction was based on a deep understanding of the planar nature of the peptide bond and the principles of hydrogen bonding. They meticulously built physical models to find stable conformations of a polypeptide chain that maximized hydrogen bonding while respecting steric constraints.
The alpha-helix has specific geometric properties: 3.6 residues per turn, a pitch of 5.4 Å (0.54 nm), and backbone dihedral angles ([latex]\phi, \psi[/latex]) typically around (-60°, -45°). The side chains of the amino acids extend outwards from the helical axis, allowing them to interact with the environment or other parts of the protein. Certain amino acids, like alanine, leucine, and methionine, are considered ‘helix formers,’ while others, like proline (which lacks a backbone N-H for hydrogen bonding and has a rigid ring) and glycine (which is too flexible), are ‘helix breakers.’ The discovery of the alpha-helix and the beta-sheet provided the first fundamental insights into how a simple linear chain of amino acids could fold into complex, stable, and functional three-dimensional structures.
类型
中断
使用方法
前体
- x-ray diffraction studies of fibrous proteins like keratin by william astbury
- understanding of the planar geometry of the peptide bond
- elucidation of the principles of hydrogen bonding by linus pauling
- development of physical molecular models
应用
- understanding the structure of fibrous proteins like keratin in hair and skin
- designing alpha-helical peptides for antimicrobial or anti-cancer therapies
- modeling transmembrane domains of proteins, which are often alpha-helical
- protein structure prediction and 验证
- rational drug design targeting alpha-helical protein-protein interaction interfaces
专利:
迎接新挑战
机械工程师、项目、工艺工程师或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
相关发明、创新和技术原理