Formal verification is the use of mathematical methods to prove or disprove the correctness of a system’s design with respect to a formal specification. Unlike testing, which can only show the presence of bugs for specific inputs, formal verification can prove their absence for all possible inputs. It involves creating a formal model of the system and using techniques like model checking or theorem proving.
Verificación formal
- Edmund M. Clarke
- E. Allen Emerson
- Joseph Sifakis
Formal verificación provides the highest level of assurance for system correctness. The process begins with creating a formal model of the system using a mathematical language, such as temporal logic or process algebra. A set of properties, derived from the system’s requirements, is also expressed in a formal language. The verification process then uses automated tools to systematically explore all possible states of the model to determine if the specified properties hold true.
Two primary techniques are used: model checking and theorem proving. Model checking is an automated technique that explores the entire state space of a finite-state model. If a property is violated, the model checker produces a counterexample—a specific execution trace that demonstrates the failure. This is highly effective but can suffer from the ‘state space explosion’ problem for very complex systems. Theorem proving involves representing the system and its properties as logical formulas (theorems) and using automated or interactive provers to construct a formal proof of correctness. This approach can handle infinite-state systems but often requires significant manual effort from experts.
While computationally expensive and requiring specialized expertise, formal verification is indispensable for safety-critical or security-critical systems where the cost of failure is extremely high. It has been successfully applied to verify the correctness of CPU floating-point units, comunicación protocols, and control systems where exhaustive testing is infeasible.
Tipo
Disruption
Utilización
Precursors
- propositional and predicate logic
- automata theory
- lambda calculus
- program semantics (e.g., hoare logic)
- computational complexity theory
Aplicaciones
- microprocessor design (e.g., intel pentium fdiv bug fix)
- avionics software (e.g., fly-by-wire systems)
- cryptographic protocol analysis
- railway signaling systems
- software drivers for critical operating systems
Patentes:
Potential Innovations Ideas
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Historical Context
Verificación formal
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles