Hogar » Courant–Friedrichs–Lewy Condition

Courant–Friedrichs–Lewy Condition

1928
  • Richard Courant
  • Kurt Friedrichs
  • Hans Lewy

The Courant–Friedrichs–Lewy (CFL) condition is a necessary stability criterion for numerical solutions of hyperbolic partial differential equations using explicit time-integration schemes. It dictates that the time step size must be small enough that information does not travel further than one spatial grid cell per time step. For a 1D case, [latex]C = u \frac{\Delta t}{\Delta x} \le C_{max}[/latex], ensuring numerical stability.

The CFL condition is a fundamental concept governing the stability of explicit time-marching numerical methods. It arises from the principle that the numerical domain of dependence of a grid point must contain the physical domain of dependence. In simpler terms, for a calculation at a grid point (i) at the next time step (n+1), the numerical scheme uses information from neighboring points at the current time step (n). The CFL condition ensures that any physical phenomenon (like a pressure wave) that could have reached point (i) in the time interval [latex]\Delta t[/latex] must have originated from within that set of neighboring points.

In the formula [latex]C = \frac{u \Delta t}{\Delta x} \le C_{max}[/latex], [latex]C[/latex] is the dimensionless Courant number, [latex]u[/latex] is the maximum wave propagation speed in the system (e.g., fluid velocity plus the speed of sound for compressible flow), [latex]\Delta t[/latex] is the time step, and [latex]\Delta x[/latex] is the grid spacing. The value of [latex]C_{max}[/latex] depends on the specific numerical scheme but is often on the order of 1. If the condition is violated ([latex]C > C_{max}[/latex]), the numerical solution becomes unstable, with errors growing exponentially, leading to a non-physical, divergent result. This imposes a severe restriction on the time step size, especially in meshes with very fine cells ([latex]\Delta x[/latex] is small), making explicit methods computationally expensive for certain problems. Implicit methods, while more complex per time step, are often unconditionally stable and not subject to the CFL constraint, allowing for much larger time steps.

UNESCO Nomenclature: 1208
– Numerical Analysis

Tipo

Abstract System

Disruption

Foundational

Utilización

Widespread Use

Precursors

  • Finite Difference Método
  • Theory of Partial Differential Equations (specifically hyperbolic equations)
  • Concept of numerical stability and convergence
  • Von Neumann stability analysis

Aplicaciones

  • ensuring stability in weather prediction models
  • controlling time step size in aerodynamic simulations
  • simulating wave propagation in acoustics and electromagnetics
  • financial modeling of options pricing using explicit finite difference methods
  • seismic wave modeling for oil and gas exploration
  • simulations in plasma physics and astrophysics

Patentes:

ESO

Potential Innovations Ideas

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: cfl condition, numerical stability, explicit method, time-marching, hyperbolic pde, courant number, time step, convergence

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Related Invention, Innovation & Technical Principles

Scroll al inicio

También te puede interesar