Hogar » Affine Variety

Affine Variety

1900

An affine variety is the set of points in an affine space whose coordinates are the common zeros of a finite set of polynomials. For a set of polynomials [latex]S = \{f_1, \dots, f_k\}[/latex] in a polynomial ring [latex]k[x_1, \dots, x_n][/latex], the corresponding affine variety is [latex]V(S) = \{x \in k^n | f(x) = 0 \text{ for all } f \in S\}[/latex]. It is a central object of study in classical algebraic geometry.

An affine variety is the most fundamental object in classical algebraic geometry, directly generalizing the geometric idea of a solution set to a system of equations. The polynomials are defined over a field [latex]k[/latex], which is often taken to be algebraically closed, such as the field of complex numbers [latex]\mathbb{C}[/latex], to ensure a rich supply of points. The set of all affine varieties in a given affine space [latex]k^n[/latex] forms the closed sets of a topology, known as the Zariski topology. This topology is quite different from more familiar topologies like the Euclidean topology; for instance, it is not Hausdorff.

The crucial insight is the connection between these geometric objects (varieties) and algebraic objects (ideals in a polynomial ring). Specifically, every variety [latex]V(S)[/latex] corresponds to an ideal [latex]I(V(S))[/latex], which consists of all polynomials that vanish on every point of the variety. This correspondence is made precise by Hilbert’s Nullstellensatz, which establishes a bijection between affine varieties and radical ideals in the polynomial ring [latex]k[x_1, \dots, x_n][/latex]. This dictionary between algebra and geometry allows geometric problems to be translated into the language of commutative algebra, where powerful tools can be applied, and vice versa. For example, the dimension of a variety can be defined algebraically using the Krull dimension of its coordinate ring.

UNESCO Nomenclature: 1101
– Algebra

Tipo

Abstract System

Disruption

Foundational

Utilización

Widespread Use

Precursors

  • analytic geometry (descartes, fermat)
  • theory of polynomial rings (hilbert, noether)
  • ideal theory (dedekind, krull)
  • elimination theory (sylvester, cayley)

Aplicaciones

  • criptografía (elliptic curve cryptography)
  • robótica (solving inverse kinematics equations)
  • coding theory (algebraic geometry codes)
  • computer-aided geometric design (cagd)
  • statistics (algebraic statistics)

Patentes:

ESO

Potential Innovations Ideas

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: affine variety, polynomial equations, zero-set, algebraic set, commutative algebra, Zariski topology, ideal, classical algebraic geometry

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Scroll al inicio

También te puede interesar