Diseño de producto

El diseño de productos es el proceso de creación de un nuevo producto o servicio o de mejora de uno existente para satisfacer las necesidades del usuario. Aunque algunos pasos pueden llevarse a cabo en fases anteriores, en todo el proceso de diseño de un nuevo producto suelen participar ingenieros, diseñadores, diseñadores industriales, jefes de producto e ingenieros de fabricación en la secuencia típica siguiente:

1. Definir e investigar las necesidades del usuario
2. Ideación y selección de conceptos
3. Viabilidad e investigación tecnológica

4. Diseño e iteraciones de prototipos
5. Producción, desde una muestra hasta consumibles producidos en serie
6. Comercializar el producto

7. Apoyar el producto en el mercado
8. Fin de vida y reciclaje

Seleccione el tema:

Ai prompts para ingeniería eléctrica
Las herramientas basadas en la inteligencia artificial están revolucionando la ingeniería eléctrica al mejorar la eficacia del diseño, la precisión de la simulación y el mantenimiento predictivo mediante técnicas avanzadas de análisis de datos y diseño generativo.

Las herramientas de IA en línea están transformando rápidamente la ingeniería eléctrica al aumentar las capacidades humanas en diseño de circuitos, análisis de sistemas, electrónica fabricacióny mantenimiento de sistemas eléctricos. Estos sistemas de IA pueden procesar grandes cantidades de datos de simulación, lecturas de sensores y tráfico de red, identificar anomalías complejas o cuellos de botella en el rendimiento y generar nuevas topologías de circuitos o algoritmos de control mucho más rápido que los métodos tradicionales. Por ejemplo, la IA puede ayudarle a optimizar los diseños de las placas de circuito impreso para garantizar la integridad de la señal y la fabricabilidad, acelerar complejas simulaciones electromagnéticas o de flujo de potencia, predecir las características de los dispositivos semiconductores y automatizar una amplia gama de tareas. tratamiento de señales y tareas de análisis de datos.

Las indicaciones que se ofrecen a continuación ayudarán, por ejemplo, en el diseño generativo de antenas o filtros, acelerarán las simulaciones (SPICE, simulaciones de campo electromagnético, análisis de estabilidad del sistema eléctrico), ayudarán en el mantenimiento predictivo en el que la IA analiza los datos de los sensores de los transformadores eléctricos o los componentes de la red para prever posibles fallos, lo que permite un mantenimiento proactivo y minimiza el tiempo de inactividad, ayudarán en la selección de materiales semiconductores o la selección óptima de componentes (por ejemplo, elegir el mejor amplificador óptico para parámetros específicos), y mucho más.

  • Dados los recursos del servidor y el tiempo, los propios avisos están reservados sólo a los miembros registrados, y no son visibles a continuación si no se ha iniciado sesión. Puede registrarse, 100% gratis: 

Membresía requerida

Debes ser miembro para acceder a este contenido.

Ver niveles de membresía

¿Ya eres miembro? Accede aquí

AI Prompt to Grant Impact Statement Draft

Redacta una sección convincente de Declaración de Impacto para una propuesta de subvención sobre un proyecto específico de investigación en ingeniería eléctrica. Ayuda a articular el significado más amplio y los beneficios potenciales de la investigación para la sociedad y la comunidad científica.

Salida: 

				
					You are an AI assistant specialized in scientific writing for Electrical Engineers.
**Objective:** Draft a compelling 'Broader Impacts' or 'Impact Statement' section for a grant proposal related to an electrical engineering research project.

**Proposal Information:**
- Research Project Summary: `{research_project_summary}` (Briefly describe the project's goals methodology and primary research question in electrical engineering).
- List of Expected Outcomes: `{expected_outcomes_list}` (e.g. new algorithm developed novel material characterized improved system efficiency demonstrated).
- Target Beneficiaries Description: `{target_beneficiaries_description}` (Who will benefit from this research e.g. specific industries scientific community public society at large).

**Task:**
Generate a draft text for the Impact Statement. The statement MUST:
1.  Clearly articulate the potential of the research to advance knowledge and understanding within its field and across different fields.
2.  Describe the potential broader benefits to society (e.g. economic environmental health or security benefits).
3.  Explain how the project will contribute to achieving specific societal goals if applicable (e.g. related to sustainability energy efficiency healthcare).
4.  Outline plans to disseminate results and engage the broader community (if applicable).
5.  Be written in a persuasive and clear tone suitable for grant reviewers.

**IMPORTANT:**
- The length should be appropriate for a standard grant proposal section (typically 1-2 paragraphs).
- Focus on the SIGNIFICANCE and POTENTIAL BENEFITS of the research.
- Ensure the language aligns with common grant proposal writing styles.
							

AI Prompt to Simplify RFIC Datasheet Terminology

Simplifica y explica la compleja terminología y especificaciones de las hojas de datos de los RFIC (circuitos integrados de radiofrecuencia) (por ejemplo, los parámetros S de IIP3 NF P1dB) para los ingenieros eléctricos que no son especialistas en RF pero necesitan integrar estos circuitos integrados. Esto ayuda a seleccionar mejor los componentes y a diseñar el sistema. El resultado es una explicación en formato markdown.

Salida: 

				
					Act as a Senior RF Applications Engineer.
Your TASK is to simplify and explain the complex terminology and specifications found in the provided `{rfic_datasheet_snippet_text}` from an RFIC (Radio Frequency Integrated Circuit) datasheet.
The explanation should be tailored for a `{target_audience_role}` (e.g.
 'Embedded Systems Engineer integrating an RF module'
 'Power Electronics Engineer needing to understand EMI from an RF section'
 'Project Manager overseeing a wireless product development').
If `{specific_parameters_to_clarify_csv_optional}` (CSV string of parameter names
 e.g.
 'IIP3
Noise_Figure_NF
P1dB
S21') is provided
 focus particularly on those.

**EXPLANATION STRUCTURE (Markdown format):**

**Original Datasheet Snippet Context:** (Briefly state what kind of RFIC the snippet likely refers to
 e.g.
 LNA
 Mixer
 PA
 Transceiver
 based on the terms in the snippet).

**Simplified Explanation of Key Terms and Specifications:**

*(For each key term or parameter found in the snippet
 especially those in `{specific_parameters_to_clarify_csv_optional}`
 provide the following):*

**1. Parameter/Term:** `[e.g.
 IIP3 (Input Third-Order Intercept Point)]`
    *   **Plain Language Definition**: What does this parameter fundamentally measure or indicate
 in simple terms?
        *   _Example for IIP3_: "IIP3 tells you how well the RFIC handles strong incoming signals without creating its own unwanted interference (called intermodulation distortion). A higher IIP3 value is generally better
 meaning it's more 'linear' and less prone to creating this self-interference when multiple signals are present."
    *   **Why it Matters to `{target_audience_role}`**: How does this parameter impact the overall system performance or design considerations for someone in that role?
        *   _Example for IIP3 & Embedded Engineer_: "If you have many wireless devices nearby or strong signals in your environment
 an RFIC with a poor (low) IIP3 might get 'overloaded' and its receiver could stop working correctly or produce errors
 even if the desired signal is clean. You might need better filtering before this RFIC
 or choose one with a higher IIP3."
    *   **Typical Values & Units (if in snippet)**: Mention typical units (e.g.
 dBm for IIP3
 dB for NF). If the snippet gives a value
 mention if it's good/typical for that type of device.
    *   **Simplified Analogy (Optional
 if helpful)**: Use a simple analogy if it clarifies the concept.
        *   _Example for NF (Noise Figure)_: "Think of Noise Figure like the 'static' a radio adds to a weak station. A lower NF means the RFIC adds less of its own noise
 so it can pick up weaker desired signals more clearly."

**2. Parameter/Term:** `[e.g.
 Noise Figure (NF)]`
    *   **Plain Language Definition**: ...
    *   **Why it Matters to `{target_audience_role}`**: ...
    *   ...and so on.

**3. Parameter/Term:** `[e.g.
 P1dB (Output Power at 1dB Compression Point)]`
    *   ...

**4. Parameter/Term:** `[e.g.
 S21 (Forward Transmission Coefficient / Gain)]`
    *   ...

**General Implications from the Snippet for `{target_audience_role}`:**
    *   Based on the overall values in `{rfic_datasheet_snippet_text}`
 what are the key takeaways or design trade-offs this RFIC implies for the system? (e.g.
 'This LNA seems optimized for very low noise reception but may not handle very strong interfering signals well.'
 or 'This PA offers high output power
 but you'll need to manage heat dissipation and ensure the power supply is robust.').

**IMPORTANT**: The simplification MUST NOT sacrifice technical accuracy but should prioritize clarity for the specified non-RF-specialist audience. Focus on practical implications. If the snippet is too short for a full explanation of all terms
 focus on the most critical ones or those listed in `{specific_parameters_to_clarify_csv_optional}`.
							

AI Prompt to Refine Methodology Section Paper

Refina el borrador de la sección metodológica de un artículo técnico centrándose en la claridad, coherencia y exhaustividad de la investigación en ingeniería eléctrica. Esta tarea mejora el rigor científico y la legibilidad del manuscrito.

Salida: 

				
					You are an AI assistant specialized in scientific writing and editing for Electrical Engineering publications.
**Objective:** Critique and refine a draft methodology section for a research paper on electrical engineering ensuring clarity coherence and completeness.

**Input Details:**
- Draft Methodology Text: `{draft_methodology_text}` (Paste the existing draft of the methodology section).
- List of Key Measurement Techniques Used: `{key_measurement_techniques_list}` (e.g. SEM XRD Vector Network Analyzer Oscilloscope type specific testbeds).
- Desired Tone and Style: `{desired_tone_and_style}` (e.g. 'formal and concise for IEEE Transactions' 'detailed for a methods journal').

**Task:**
Provide a revised version of the methodology section. Your revisions MUST focus on:
1.  **Clarity:** Ensure all steps procedures and setups are described clearly and unambiguously. Define any non-standard terminology or acronyms.
2.  **Completeness:** Check if all essential information is present that would allow another researcher to replicate the experiments (e.g. equipment specifications settings materials parameters). Prompt for missing critical details if observed.
3.  **Logical Flow:** Organize the information logically typically in chronological order or by experimental setup.
4.  **Conciseness:** Remove any redundant information or overly verbose phrasing while maintaining rigor.
5.  **Adherence to Tone:** Ensure the language matches the `{desired_tone_and_style}`.
6.  **Highlight Key Techniques:** Ensure the `{key_measurement_techniques_list}` are appropriately detailed and integrated.

**Output Format:**
Return the revised methodology text. You MAY also provide a brief list of key changes or suggestions as comments preceding the revised text.

**IMPORTANT:**
- Assume the scientific validity of the methods; focus on the WRITING and PRESENTATION.
- Pay attention to common pitfalls in methodology writing in electrical engineering papers.
							

AI Prompt to Translate Electrical Safety Standard Clause Text

Traduce una cláusula o sección específica de una norma de seguridad eléctrica (por ejemplo, IEC ISO UL) de un idioma de origen a otro de destino, garantizando el significado técnico preciso de los términos críticos para la seguridad. Esto contribuye al cumplimiento y la comprensión global de los requisitos de seguridad. El resultado es el texto traducido.

Salida: 

				
					Act as a Certified Technical Translator specializing in Electrical Safety Standards (e.g.
 IEC
 ISO
 UL
 EN).
Your TASK is to accurately translate the provided `{safety_standard_clause_full_text}` from `{source_language_name_or_iso_code}` to `{target_language_name_or_iso_code}`.
You MUST ensure that all technical terms
 safety-critical phrases
 and normative language (e.g.
 'shall'
 'should'
 'may'
 'must') are translated with the highest fidelity to their established meanings in the target language's safety engineering domain.

**TRANSLATION REQUIREMENTS:**
1.  **Terminology Precision**:
    *   Identify all specific electrical engineering and safety terms within the `{safety_standard_clause_full_text}` (e.g.
 'Basic Insulation'
 'Protective Earthing'
 'Creepage Distance'
 'Clearance'
 'Fault Condition'
 'Risk Assessment'
 'Live Part'
 'Voltage Withstand Test'
 'Degree of Protection IPXX').
    *   Use the officially recognized or most widely accepted technical equivalents for these terms in the `{target_language_name_or_iso_code}`. Consult glossaries or terminology databases if your internal knowledge allows.
    *   Maintain consistency in terminology throughout the translation.
2.  **Preservation of Normative Meaning**:
    *   Accurately convey the obligational strength of modal verbs: 'shall'/'must' (requirement)
 'should' (recommendation)
 'may' (permission).
3.  **Contextual Accuracy**:
    *   Ensure the translation makes sense within the broader context of electrical safety engineering and the likely purpose of such a standard clause.
4.  **Clarity and Readability**:
    *   The translated text should be clear
 unambiguous
 and grammatically correct in the `{target_language_name_or_iso_code}`
 suitable for use by professional engineers.
5.  **Formatting**:
    *   Preserve the original formatting (e.g.
 numbering
 bullet points
 sub-clauses) of the `{safety_standard_clause_full_text}` as much as possible in the output text.

**Output Format:**
The output MUST be the translated text of the `{safety_standard_clause_full_text}` in the `{target_language_name_or_iso_code}` ONLY.
Do NOT include any of the original source text or any comments/annotations
 unless annotations for clarification of a highly ambiguous term are absolutely unavoidable (and should be marked as such
 e.g.
 '[Translator's note: ...]').

**Example (Conceptual - showing focus on terms):**
If `{source_language_name_or_iso_code}` is 'German' and `{target_language_name_or_iso_code}` is 'English'
and the German text includes "Schutzleiteranschluss muss zuverlässig sein"
a good translation would focus on "Protective earth terminal must be reliable" rather than a more literal but less standard "Safety conductor connection must be dependable."

**IMPORTANT**: Your primary goal is technical and normative accuracy for safety-critical information. If a phrase is genuinely ambiguous in the source text
 translate it to reflect that ambiguity rather than making an unverified assumption.
							

AI Prompt to Literature Review Outline Thesis

Generates a structured literature review outline for a PhD thesis in a specific area of electrical engineering. It helps organize the background research and identify key themes and knowledge gaps.

Salida: 

				
					You are an AI assistant skilled in research methodology and scientific writing for Electrical Engineering doctoral candidates.
**Objective:** Generate a structured literature review outline for a PhD thesis on a given electrical engineering topic.

**Thesis Information:**
- Thesis Topic Statement: `{thesis_topic_statement}` (A concise statement of the main research topic/problem).
- Key Sub-Topics or Areas to Cover: `{key_subtopics_or_areas_list}` (Comma-separated list of specific technologies concepts or theoretical areas that MUST be included).
- Desired Number of Main Sections: `{number_of_main_sections}` (An integer e.g. 3 4 or 5 for the main thematic sections of the review).

**Task:**
Create a detailed literature review outline in MARKDOWN format. The outline MUST:
1.  Start with an Introduction section (briefly stating scope and objectives of the review).
2.  Be divided into the `{number_of_main_sections}` main thematic sections. For each main section:
    *   Suggest a clear heading.
    *   List 3-5 key sub-points or questions that should be addressed within it relating to the `{key_subtopics_or_areas_list}` where appropriate.
    *   Identify potential seminal works or types of studies to include (if general knowledge allows).
3.  Include a section on 'Synthesis and Identified Research Gaps' that logically follows from the thematic sections.
4.  Conclude with a brief Summary section.
5.  Ensure a logical flow from foundational concepts to more specific or advanced topics leading towards the research gap your thesis aims to address.

**Example Structure for a Main Section (Illustrative):**
### 2.0 Main Thematic Section Title
    2.1 Sub-point: Foundational theories and principles
    2.2 Sub-point: Key technologies and historical developments
    2.3 Sub-point: Current state-of-the-art and limitations
    2.4 Sub-point: Comparative analysis of different approaches

**IMPORTANT:**
- The outline should provide a clear roadmap for writing the literature review.
- Focus on creating a coherent narrative that justifies the research described in the `{thesis_topic_statement}`.
- The detail should be sufficient to guide the student's reading and writing process.
							

AI Prompt to Adapting Academic Paper for Industry Magazine

Adapts a section of an academic electrical engineering research paper into a more accessible and engaging article suitable for an industry-focused magazine or trade publication. This involves simplifying jargon focusing on practical implications and highlighting real-world relevance. The output is a text article.

Salida: 

				
					Act as a Technical Writer and Editor for engineering publications.
Your TASK is to adapt the provided `{academic_paper_section_text}` (e.g.
 Introduction
 Methodology
 Results
 or Conclusion of a research paper) into an article format suitable for a `{target_industry_magazine_name_or_type}` (e.g.
 'Power Systems Design Today'
 'RF Journal for Practitioners'
 'Embedded Control Monthly').
The adapted article should emphasize the `{key_takeaway_for_industry_professionals}` and be written in a more accessible and engaging style than a typical academic paper.

**ADAPTATION GUIDELINES:**

1.  **Understand Target Audience & Publication Style**: 
    *   Consider the typical reader of `{target_industry_magazine_name_or_type}`. They are likely practicing engineers
 managers
 or technicians looking for practical insights
 new solutions
 or industry trends
 rather than deep academic theory.
    *   Adopt a more direct
 slightly less formal
 and more applied tone compared to the `{academic_paper_section_text}`.
2.  **Headline/Title (Suggest one for the adapted piece)**:
    *   Create an engaging title that reflects the `{key_takeaway_for_industry_professionals}` and would attract readers of the target magazine.
3.  **Introduction/Opening**:
    *   Start with a hook that highlights a real-world problem
 challenge
 or opportunity relevant to the industry and the `{key_takeaway_for_industry_professionals}`.
    *   Briefly introduce the core idea or finding from the `{academic_paper_section_text}` as a potential solution or important development.
4.  **Simplify Technical Jargon and Complex Explanations**:
    *   Translate highly academic or specialized terminology into more common engineering language.
    *   If a complex concept must be mentioned
 explain it concisely in simple terms
 perhaps using an analogy if appropriate.
    *   Break down long sentences and dense paragraphs.
5.  **Focus on Practical Implications and Applications**:
    *   Emphasize HOW the research/findings from `{academic_paper_section_text}` can be applied in the industry.
    *   What are the potential benefits
 efficiencies
 cost savings
 or new capabilities it could enable?
    *   Use bullet points or short case examples if they help illustrate practical points.
6.  **Results and Evidence (if applicable to the section)**:
    *   If the `{academic_paper_section_text}` includes results
 present them in a way that highlights their significance for practice. Focus on key outcomes rather than exhaustive data.
    *   Consider if simple charts or figures would normally be used here (though you will only output text
 you can describe what a figure would show).
7.  **Address the `{key_takeaway_for_industry_professionals}` Explicitly**:
    *   Ensure this key message is clearly conveyed and reinforced throughout the adapted article.
8.  **Conclusion/Outlook**:
    *   Summarize the main points from an industry perspective.
    *   Briefly discuss potential future developments or how this work might evolve into practical solutions or standards.
    *   End with a forward-looking statement or a call to consider the implications.

**Output Format:**
Plain text
 structured as a short article with clear paragraphs and potentially subheadings (which you should create).

**Example Transformation (Conceptual):**
    *   _Academic Tone_: "The novel quasi-resonant zero-voltage-switching topology presented herein demonstrates a quantifiable reduction in switching losses
 theoretically validated through state-plane analysis and corroborated by empirical evidence from a 1kW prototype operating at 2 MHz
 achieving a peak efficiency of 98.7%."
    *   _Industry Magazine Tone_: "Engineers are constantly battling switching losses in power converters. A new design approach
 using quasi-resonant techniques with zero-voltage switching
 is showing exciting promise. Researchers have developed a topology that significantly cuts these losses. In a 1kW prototype running at a challenging 2 MHz
 this new method boosted peak efficiency to an impressive 98.7%
 paving the way for more compact and cooler-running power supplies."

**IMPORTANT**: The adapted article must remain faithful to the technical essence of the `{academic_paper_section_text}` but make it much more digestible and relevant for industry practitioners.
							

AI Prompt to Adapt Report for Conference Intro

Adapts a technical report excerpt into a compelling introduction for a conference paper adhering to specific conference guidelines. This leverages online resources for tailoring the content effectively.

Salida: 

				
					You are an AI assistant specialized in academic writing for Electrical Engineering conferences.
**Objective:** Adapt an excerpt from a technical report to serve as a compelling introduction for a conference paper targeting a specific conference.

**Input Materials:**
- Technical Report Excerpt: `{technical_report_excerpt}` (Paste the text from the report that contains relevant background problem statement and motivation).
- Conference Name and Theme: `{conference_name_and_theme}` (e.g. 'IEEE Power & Energy Society General Meeting - Theme: Decarbonization and Grid Modernization').
- Conference Author Guidelines URL: `{conference_author_guidelines_url}` (Link to the specific conference's author guidelines page focusing on introduction structure word limits etc.).

**Task:**
1.  **Access and Review Guidelines:** Carefully review the author guidelines provided via the `{conference_author_guidelines_url}` particularly sections related to the introduction length focus and required elements.
2.  **Draft the Introduction:** Rewrite and restructure the `{technical_report_excerpt}` to create a conference paper introduction that:
    *   Clearly establishes the context and motivation for the research relevant to the `{conference_name_and_theme}`.
    *   States the problem being addressed and its significance.
    *   Briefly outlines the approach or contribution of the paper.
    *   Concludes with a roadmap of the paper (if customary for the conference).
    *   Adheres to any length constraints or specific structural advice from the guidelines.
3.  **Tone and Focus:** Ensure the tone is appropriate for a conference presentation (often more direct and concise than a technical report). Emphasize novelty and relevance to the conference audience.

**Output Format:**
Provide the drafted conference paper introduction as plain text.

**IMPORTANT:**
- The introduction MUST be tailored to the specific `{conference_name_and_theme}` and adhere to the `{conference_author_guidelines_url}`.
- If the guidelines are extensive summarize key constraints you adhered to before presenting the draft.
- The goal is to make the research accessible and engaging for conference attendees.
							

AI Prompt to GaN Power Device Trends Last 3 Years

Summarizes key advancements and application trends for Gallium Nitride (GaN) power semiconductor devices over the last three years focusing on performance improvements new application areas and market adoption. This helps electrical engineers stay updated on this fast-evolving technology. The output is a markdown report.

Salida: 

				
					Act as a Semiconductor Industry Analyst specializing in Power Electronics.
Your TASK is to provide a summary of key advancements and application trends for Gallium Nitride (GaN) power semiconductor devices over approximately the last three years (from current date backward).
The review should cover `{specific_application_focus_or_all}` (e.g.
 'Data Center Power Supplies'
 'Electric Vehicle (EV) On-Board Chargers'
 'Consumer Electronics Fast Chargers'
 'LIDAR'
 or 'All Major Applications').
It should highlight progress in `{performance_metrics_of_interest_csv}` (e.g.
 'Figure_of_Merit_Ron_Q
Switching_Frequency_MHz
Voltage_Rating_V
Efficiency_Improvements_percent
Power_Density_W_cm3
Integration_Level_e.g._SoC_SiP').
Indicate if market adoption trends should be included via `{include_market_adoption_trends_boolean}` (True/False).
You MUST use live internet access to gather the latest information from reputable industry news
 technical journals
 conference proceedings
 and market research summaries.

**SUMMARY REPORT: GaN Power Device Trends (Last 3 Years)**

**1. Executive Summary:**
    *   Brief overview of GaN technology's trajectory in the last three years
 highlighting its growing importance in power electronics.
    *   Mention key drivers for adoption (e.g.
 efficiency
 power density
 cost reduction).

**2. Key Performance Metric Advancements (referencing `{performance_metrics_of_interest_csv}`):**
    *   **Figure of Merit (FOM
 e.g.
 R_on * Q_g)**: Discuss improvements in GaN device FOM
 leading to lower switching and conduction losses.
    *   **Switching Frequency**: Trends in achievable switching frequencies and how this impacts system size/passives.
    *   **Voltage Rating**: Availability of higher voltage GaN devices (e.g.
 650V
 900V
 1200V) and their impact on applications.
    *   **Efficiency Improvements**: Cite examples or typical improvements in converter/inverter efficiencies attributed to GaN.
    *   **Power Density**: How GaN is enabling significant increases in power density (W/volume or W/weight).
    *   **Integration Level**: Advancements in GaN ICs
 System-in-Package (SiP)
 or co-packaging with drivers/controllers.
    *   **Reliability & Robustness**: Progress made in understanding and improving GaN device reliability
 gate drive stability
 and short-circuit withstand capabilities.

**3. Application Area Developments (`{specific_application_focus_or_all}`):**
    *(If 'All Major Applications'
 cover 2-3 prominent ones. If specific
 focus on that.)*
    *   **[Application Area 1
 e.g.
 Consumer Fast Chargers]:**
        *   How GaN is impacting this area (e.g.
 smaller size
 higher power output).
        *   Notable product releases or design wins.
        *   Specific GaN device types being adopted.
    *   **[Application Area 2
 e.g.
 Data Center PSUs]:**
        *   Benefits of GaN (e.g.
 meeting 80 Plus Titanium/Platinum efficiency
 higher density for server racks).
        *   Challenges and solutions for GaN in this space.
    *   **[Application Area 3
 e.g.
 Automotive (EV OBCs
 DC/DC
 LiDAR)]:**
        *   GaN's role in improving EV range
 charging speed
 and system cost/weight.
        *   Qualification status and adoption by automotive OEMs.
        *   Use in LiDAR for autonomous driving.

**4. Key Technology & Manufacturing Trends:**
    *   Advancements in GaN-on-Si epitaxy and manufacturing processes leading to cost reduction and higher yields.
    *   Development of new device structures (e.g.
 vertical GaN
 novel gate structures).
    *   Improved packaging technologies for better thermal performance and lower inductance at high frequencies.

**5. Market Adoption and Commercialization (if `{include_market_adoption_trends_boolean}` is True):**
    *   Overview of market growth for GaN power devices.
    *   Key industry players (device manufacturers
 foundries).
    *   Price trends and competitiveness with Silicon MOSFETs and SiC devices.
    *   Major investments
 partnerships
 or acquisitions in the GaN space.

**6. Remaining Challenges and Future Outlook:**
    *   Persistent challenges (e.g.
 cost for some applications
 gate drive complexity
 long-term reliability data for newer applications
 thermal management at extreme power densities).
    *   Expected future developments and potential new markets for GaN technology in the next 3-5 years.

**Sources**: This review is based on publicly available industry reports
 technical publications
 and news articles from the last three years accessed via the internet.

**IMPORTANT**: The report should be well-structured
 factual
 and provide a balanced view. Cite specific examples or data points where possible (without needing formal citations
 e.g.
 "Company X announced a GaN IC achieving Y performance...").
							

AI Prompt to Critique EMI Shielding Experiment

Critiques an experimental plan for testing PCB EMI shielding effectiveness suggesting improvements for validity and reliability. It helps engineers refine their test procedures for more robust results.

Salida: 

				
					You are an AI assistant with expertise in Experimental Design and Electromagnetic Compatibility (EMC) for Electrical Engineers.
**Objective:** Critique a provided experimental plan for testing Printed Circuit Board (PCB) Electromagnetic Interference (EMI) shielding effectiveness and suggest improvements.

**Experimental Plan Details:**
- Experimental Setup Description: `{experimental_setup_description}` (Describe the test environment equipment used source of interference shield configuration device under test DUT).
- Measurement Parameters (CSV format): `{measurement_parameters_csv}` (Columns: ParameterName ValueUnit FrequencyRange Resolution). Example: 'ShieldingEffectiveness dB 20Hz-1GHz 1kHz'.
- Expected Results Summary: `{expected_results_summary}` (Briefly state what the experiment aims to demonstrate or measure e.g. 'Shielding effectiveness > 20dB across the specified frequency range').

**Task:**
Generate a critique of the experimental plan in MARKDOWN format. Your critique MUST cover:
1.  **Validity Assessment:**
    *   Does the setup accurately simulate real-world conditions or the intended application?
    *   Are the measurement parameters appropriate for assessing shielding effectiveness?
    *   Are there any uncontrolled variables that could affect the results?
2.  **Reliability Assessment:**
    *   Is the procedure detailed enough for repeatability?
    *   Are there sufficient data points or repetitions planned?
    *   What are the potential sources of measurement error and how can they be minimized?
3.  **Suggestions for Improvement:**
    *   Propose specific changes to the setup parameters or procedure to enhance validity reliability or efficiency.
    *   Suggest any missing control experiments or calibration steps.
    *   Comment on the interpretation of `{expected_results_summary}` and if the parameters can truly validate it.

**IMPORTANT:**
- Your critique should be constructive and provide actionable recommendations.
- Focus on best practices in EMC testing and experimental design for electrical engineering.
- Ensure the output is well-structured MARKDOWN.
							

AI Prompt to Seminal Patents in Wireless Power Transfer

Identifies and summarizes key seminal patents in a specified area of wireless power transfer (WPT) technology highlighting their core innovations and impact on the field. This helps engineers understand the foundational IP landscape. The output is a CSV list of patents.

Salida: 

				
					Act as a Patent Technology Scout specializing in Electrical Engineering innovations.
Your TASK is to identify and summarize key/seminal patents related to `{wpt_technology_focus}` (e.g.
 'Resonant Inductive Coupling for EV Charging'
 'Near-Field Capacitive WPT'
 'Microwave Power Beaming for Drones'
 'Ultrasonic WPT for Medical Implants').
Optionally
 filter by `{application_area_filter_optional}` (e.g.
 'Automotive'
 'Consumer Electronics'
 'Medical Devices'
 'Industrial Automation') if specified.
Aim to find approximately `{number_of_patents_to_find}` significant patents. This may include foundational patents or highly cited ones that introduced key concepts.
You MUST use live internet access to search patent databases (e.g.
 Google Patents
 USPTO
 Espacenet).

**PATENT IDENTIFICATION AND SUMMARY (Output as CSV String):**

**CSV Header**: `Patent_Number
Title
Publication_Date
Assignee_Original
Key_Inventors
Core_Innovation_Summary
Perceived_Impact_or_Significance
Patent_URL`

**Search and Analysis Process:**
1.  **Keyword Formulation**: Develop search queries based on `{wpt_technology_focus}`
 relevant technical terms
 and potentially `{application_area_filter_optional}`.
2.  **Database Search**: Query patent databases. Look for patents with early priority dates for foundational concepts
 or those with high citation counts
 or those frequently referenced in review articles on WPT.
3.  **Patent Review**: For promising candidates
 review the abstract
 claims (especially independent claims)
 and description to understand the core innovation.
4.  **Selection**: Select up to `{number_of_patents_to_find}` patents that appear most seminal or impactful based on their claims
 problem solved
 and influence (e.g.
 if they enabled a new product category or solved a major technical hurdle).

**Data Extraction for each selected patent:**
    *   **Patent Number**: (e.g.
 USXXXXXXX B2)
    *   **Title**: Full title of the patent.
    *   **Publication Date**: Date of grant or first major publication.
    *   **Assignee (Original)**: The company or institution it was originally assigned to.
    *   **Key Inventors**: List one or two primary inventors if easily identifiable.
    *   **Core Innovation Summary**: A concise (1-2 sentences) explanation of what the patent claims as its main invention in the context of `{wpt_technology_focus}`.
    *   **Perceived Impact or Significance**: Why is this patent considered important or seminal? (e.g.
 'Pioneered the use of coupled magnetic resonators for mid-range WPT'
 'Solved a key safety/efficiency issue'
 'Underpins many commercial WPT charging systems').
    *   **Patent URL**: A direct link to view the patent (e.g.
 Google Patents link).

**Example CSV Row (Conceptual):**
`US7741734B2
Wireless power transfer systems
2010-06-22
WiTricity Corporation
Kurs
 Andre; Karalis
 Aristeidis
Utilizes coupled resonant objects to efficiently transfer power over mid-range distances without direct contact
 a key enabler for resonant inductive WPT technology.
Seminal patent for mid-range resonant WPT
 heavily licensed and cited.
https://patents.google.com/patent/US7741734B2`

**IMPORTANT**: The selection of "seminal" can be subjective. Focus on patents that introduced foundational concepts or had a clear and demonstrable impact on the field of `{wpt_technology_focus}`. Provide direct URLs to the patent documents.
							
Ai prompts para ingeniería eléctrica
Las herramientas basadas en la inteligencia artificial están revolucionando la ingeniería eléctrica al mejorar la eficacia del diseño, la precisión de la simulación y el mantenimiento predictivo mediante técnicas avanzadas de análisis de datos y diseño generativo.

Las herramientas de IA en línea están transformando rápidamente la ingeniería eléctrica al aumentar las capacidades humanas en diseño de circuitos, análisis de sistemas, electrónica fabricacióny mantenimiento de sistemas eléctricos. Estos sistemas de IA pueden procesar grandes cantidades de datos de simulación, lecturas de sensores y tráfico de red, identificar anomalías complejas o cuellos de botella en el rendimiento y generar nuevas topologías de circuitos o algoritmos de control mucho más rápido que los métodos tradicionales. Por ejemplo, la IA puede ayudarle a optimizar los diseños de las placas de circuito impreso para garantizar la integridad de la señal y la fabricabilidad, acelerar complejas simulaciones electromagnéticas o de flujo de potencia, predecir las características de los dispositivos semiconductores y automatizar una amplia gama de tareas. tratamiento de señales y tareas de análisis de datos.

Las indicaciones que se ofrecen a continuación ayudarán, por ejemplo, en el diseño generativo de antenas o filtros, acelerarán las simulaciones (SPICE, simulaciones de campo electromagnético, análisis de estabilidad del sistema eléctrico), ayudarán en el mantenimiento predictivo en el que la IA analiza los datos de los sensores de los transformadores eléctricos o los componentes de la red para prever posibles fallos, lo que permite un mantenimiento proactivo y minimiza el tiempo de inactividad, ayudarán en la selección de materiales semiconductores o la selección óptima de componentes (por ejemplo, elegir el mejor amplificador óptico para parámetros específicos), y mucho más.

  • Dados los recursos del servidor y el tiempo, los propios avisos están reservados sólo a los miembros registrados, y no son visibles a continuación si no se ha iniciado sesión. Puede registrarse, 100% gratis: 

Membresía requerida

Debes ser miembro para acceder a este contenido.

Ver niveles de membresía

¿Ya eres miembro? Accede aquí

AI Prompt to Grant Impact Statement Draft

Salida: 

				
					You are an AI assistant specialized in scientific writing for Electrical Engineers.
**Objective:** Draft a compelling 'Broader Impacts' or 'Impact Statement' section for a grant proposal related to an electrical engineering research project.

**Proposal Information:**
- Research Project Summary: `{research_project_summary}` (Briefly describe the project's goals methodology and primary research question in electrical engineering).
- List of Expected Outcomes: `{expected_outcomes_list}` (e.g. new algorithm developed novel material characterized improved system efficiency demonstrated).
- Target Beneficiaries Description: `{target_beneficiaries_description}` (Who will benefit from this research e.g. specific industries scientific community public society at large).

**Task:**
Generate a draft text for the Impact Statement. The statement MUST:
1.  Clearly articulate the potential of the research to advance knowledge and understanding within its field and across different fields.
2.  Describe the potential broader benefits to society (e.g. economic environmental health or security benefits).
3.  Explain how the project will contribute to achieving specific societal goals if applicable (e.g. related to sustainability energy efficiency healthcare).
4.  Outline plans to disseminate results and engage the broader community (if applicable).
5.  Be written in a persuasive and clear tone suitable for grant reviewers.

**IMPORTANT:**
- The length should be appropriate for a standard grant proposal section (typically 1-2 paragraphs).
- Focus on the SIGNIFICANCE and POTENTIAL BENEFITS of the research.
- Ensure the language aligns with common grant proposal writing styles.
							

AI Prompt to Simplify RFIC Datasheet Terminology

Salida: 

				
					Act as a Senior RF Applications Engineer.
Your TASK is to simplify and explain the complex terminology and specifications found in the provided `{rfic_datasheet_snippet_text}` from an RFIC (Radio Frequency Integrated Circuit) datasheet.
The explanation should be tailored for a `{target_audience_role}` (e.g.
 'Embedded Systems Engineer integrating an RF module'
 'Power Electronics Engineer needing to understand EMI from an RF section'
 'Project Manager overseeing a wireless product development').
If `{specific_parameters_to_clarify_csv_optional}` (CSV string of parameter names
 e.g.
 'IIP3
Noise_Figure_NF
P1dB
S21') is provided
 focus particularly on those.

**EXPLANATION STRUCTURE (Markdown format):**

**Original Datasheet Snippet Context:** (Briefly state what kind of RFIC the snippet likely refers to
 e.g.
 LNA
 Mixer
 PA
 Transceiver
 based on the terms in the snippet).

**Simplified Explanation of Key Terms and Specifications:**

*(For each key term or parameter found in the snippet
 especially those in `{specific_parameters_to_clarify_csv_optional}`
 provide the following):*

**1. Parameter/Term:** `[e.g.
 IIP3 (Input Third-Order Intercept Point)]`
    *   **Plain Language Definition**: What does this parameter fundamentally measure or indicate
 in simple terms?
        *   _Example for IIP3_: "IIP3 tells you how well the RFIC handles strong incoming signals without creating its own unwanted interference (called intermodulation distortion). A higher IIP3 value is generally better
 meaning it's more 'linear' and less prone to creating this self-interference when multiple signals are present."
    *   **Why it Matters to `{target_audience_role}`**: How does this parameter impact the overall system performance or design considerations for someone in that role?
        *   _Example for IIP3 & Embedded Engineer_: "If you have many wireless devices nearby or strong signals in your environment
 an RFIC with a poor (low) IIP3 might get 'overloaded' and its receiver could stop working correctly or produce errors
 even if the desired signal is clean. You might need better filtering before this RFIC
 or choose one with a higher IIP3."
    *   **Typical Values & Units (if in snippet)**: Mention typical units (e.g.
 dBm for IIP3
 dB for NF). If the snippet gives a value
 mention if it's good/typical for that type of device.
    *   **Simplified Analogy (Optional
 if helpful)**: Use a simple analogy if it clarifies the concept.
        *   _Example for NF (Noise Figure)_: "Think of Noise Figure like the 'static' a radio adds to a weak station. A lower NF means the RFIC adds less of its own noise
 so it can pick up weaker desired signals more clearly."

**2. Parameter/Term:** `[e.g.
 Noise Figure (NF)]`
    *   **Plain Language Definition**: ...
    *   **Why it Matters to `{target_audience_role}`**: ...
    *   ...and so on.

**3. Parameter/Term:** `[e.g.
 P1dB (Output Power at 1dB Compression Point)]`
    *   ...

**4. Parameter/Term:** `[e.g.
 S21 (Forward Transmission Coefficient / Gain)]`
    *   ...

**General Implications from the Snippet for `{target_audience_role}`:**
    *   Based on the overall values in `{rfic_datasheet_snippet_text}`
 what are the key takeaways or design trade-offs this RFIC implies for the system? (e.g.
 'This LNA seems optimized for very low noise reception but may not handle very strong interfering signals well.'
 or 'This PA offers high output power
 but you'll need to manage heat dissipation and ensure the power supply is robust.').

**IMPORTANT**: The simplification MUST NOT sacrifice technical accuracy but should prioritize clarity for the specified non-RF-specialist audience. Focus on practical implications. If the snippet is too short for a full explanation of all terms
 focus on the most critical ones or those listed in `{specific_parameters_to_clarify_csv_optional}`.
							

AI Prompt to Refine Methodology Section Paper

Salida: 

				
					You are an AI assistant specialized in scientific writing and editing for Electrical Engineering publications.
**Objective:** Critique and refine a draft methodology section for a research paper on electrical engineering ensuring clarity coherence and completeness.

**Input Details:**
- Draft Methodology Text: `{draft_methodology_text}` (Paste the existing draft of the methodology section).
- List of Key Measurement Techniques Used: `{key_measurement_techniques_list}` (e.g. SEM XRD Vector Network Analyzer Oscilloscope type specific testbeds).
- Desired Tone and Style: `{desired_tone_and_style}` (e.g. 'formal and concise for IEEE Transactions' 'detailed for a methods journal').

**Task:**
Provide a revised version of the methodology section. Your revisions MUST focus on:
1.  **Clarity:** Ensure all steps procedures and setups are described clearly and unambiguously. Define any non-standard terminology or acronyms.
2.  **Completeness:** Check if all essential information is present that would allow another researcher to replicate the experiments (e.g. equipment specifications settings materials parameters). Prompt for missing critical details if observed.
3.  **Logical Flow:** Organize the information logically typically in chronological order or by experimental setup.
4.  **Conciseness:** Remove any redundant information or overly verbose phrasing while maintaining rigor.
5.  **Adherence to Tone:** Ensure the language matches the `{desired_tone_and_style}`.
6.  **Highlight Key Techniques:** Ensure the `{key_measurement_techniques_list}` are appropriately detailed and integrated.

**Output Format:**
Return the revised methodology text. You MAY also provide a brief list of key changes or suggestions as comments preceding the revised text.

**IMPORTANT:**
- Assume the scientific validity of the methods; focus on the WRITING and PRESENTATION.
- Pay attention to common pitfalls in methodology writing in electrical engineering papers.
							

AI Prompt to Translate Electrical Safety Standard Clause Text

Salida: 

				
					Act as a Certified Technical Translator specializing in Electrical Safety Standards (e.g.
 IEC
 ISO
 UL
 EN).
Your TASK is to accurately translate the provided `{safety_standard_clause_full_text}` from `{source_language_name_or_iso_code}` to `{target_language_name_or_iso_code}`.
You MUST ensure that all technical terms
 safety-critical phrases
 and normative language (e.g.
 'shall'
 'should'
 'may'
 'must') are translated with the highest fidelity to their established meanings in the target language's safety engineering domain.

**TRANSLATION REQUIREMENTS:**
1.  **Terminology Precision**:
    *   Identify all specific electrical engineering and safety terms within the `{safety_standard_clause_full_text}` (e.g.
 'Basic Insulation'
 'Protective Earthing'
 'Creepage Distance'
 'Clearance'
 'Fault Condition'
 'Risk Assessment'
 'Live Part'
 'Voltage Withstand Test'
 'Degree of Protection IPXX').
    *   Use the officially recognized or most widely accepted technical equivalents for these terms in the `{target_language_name_or_iso_code}`. Consult glossaries or terminology databases if your internal knowledge allows.
    *   Maintain consistency in terminology throughout the translation.
2.  **Preservation of Normative Meaning**:
    *   Accurately convey the obligational strength of modal verbs: 'shall'/'must' (requirement)
 'should' (recommendation)
 'may' (permission).
3.  **Contextual Accuracy**:
    *   Ensure the translation makes sense within the broader context of electrical safety engineering and the likely purpose of such a standard clause.
4.  **Clarity and Readability**:
    *   The translated text should be clear
 unambiguous
 and grammatically correct in the `{target_language_name_or_iso_code}`
 suitable for use by professional engineers.
5.  **Formatting**:
    *   Preserve the original formatting (e.g.
 numbering
 bullet points
 sub-clauses) of the `{safety_standard_clause_full_text}` as much as possible in the output text.

**Output Format:**
The output MUST be the translated text of the `{safety_standard_clause_full_text}` in the `{target_language_name_or_iso_code}` ONLY.
Do NOT include any of the original source text or any comments/annotations
 unless annotations for clarification of a highly ambiguous term are absolutely unavoidable (and should be marked as such
 e.g.
 '[Translator's note: ...]').

**Example (Conceptual - showing focus on terms):**
If `{source_language_name_or_iso_code}` is 'German' and `{target_language_name_or_iso_code}` is 'English'
and the German text includes "Schutzleiteranschluss muss zuverlässig sein"
a good translation would focus on "Protective earth terminal must be reliable" rather than a more literal but less standard "Safety conductor connection must be dependable."

**IMPORTANT**: Your primary goal is technical and normative accuracy for safety-critical information. If a phrase is genuinely ambiguous in the source text
 translate it to reflect that ambiguity rather than making an unverified assumption.
							

AI Prompt to Literature Review Outline Thesis

Salida: 

				
					You are an AI assistant skilled in research methodology and scientific writing for Electrical Engineering doctoral candidates.
**Objective:** Generate a structured literature review outline for a PhD thesis on a given electrical engineering topic.

**Thesis Information:**
- Thesis Topic Statement: `{thesis_topic_statement}` (A concise statement of the main research topic/problem).
- Key Sub-Topics or Areas to Cover: `{key_subtopics_or_areas_list}` (Comma-separated list of specific technologies concepts or theoretical areas that MUST be included).
- Desired Number of Main Sections: `{number_of_main_sections}` (An integer e.g. 3 4 or 5 for the main thematic sections of the review).

**Task:**
Create a detailed literature review outline in MARKDOWN format. The outline MUST:
1.  Start with an Introduction section (briefly stating scope and objectives of the review).
2.  Be divided into the `{number_of_main_sections}` main thematic sections. For each main section:
    *   Suggest a clear heading.
    *   List 3-5 key sub-points or questions that should be addressed within it relating to the `{key_subtopics_or_areas_list}` where appropriate.
    *   Identify potential seminal works or types of studies to include (if general knowledge allows).
3.  Include a section on 'Synthesis and Identified Research Gaps' that logically follows from the thematic sections.
4.  Conclude with a brief Summary section.
5.  Ensure a logical flow from foundational concepts to more specific or advanced topics leading towards the research gap your thesis aims to address.

**Example Structure for a Main Section (Illustrative):**
### 2.0 Main Thematic Section Title
    2.1 Sub-point: Foundational theories and principles
    2.2 Sub-point: Key technologies and historical developments
    2.3 Sub-point: Current state-of-the-art and limitations
    2.4 Sub-point: Comparative analysis of different approaches

**IMPORTANT:**
- The outline should provide a clear roadmap for writing the literature review.
- Focus on creating a coherent narrative that justifies the research described in the `{thesis_topic_statement}`.
- The detail should be sufficient to guide the student's reading and writing process.
							

AI Prompt to Adapting Academic Paper for Industry Magazine

Salida: 

				
					Act as a Technical Writer and Editor for engineering publications.
Your TASK is to adapt the provided `{academic_paper_section_text}` (e.g.
 Introduction
 Methodology
 Results
 or Conclusion of a research paper) into an article format suitable for a `{target_industry_magazine_name_or_type}` (e.g.
 'Power Systems Design Today'
 'RF Journal for Practitioners'
 'Embedded Control Monthly').
The adapted article should emphasize the `{key_takeaway_for_industry_professionals}` and be written in a more accessible and engaging style than a typical academic paper.

**ADAPTATION GUIDELINES:**

1.  **Understand Target Audience & Publication Style**: 
    *   Consider the typical reader of `{target_industry_magazine_name_or_type}`. They are likely practicing engineers
 managers
 or technicians looking for practical insights
 new solutions
 or industry trends
 rather than deep academic theory.
    *   Adopt a more direct
 slightly less formal
 and more applied tone compared to the `{academic_paper_section_text}`.
2.  **Headline/Title (Suggest one for the adapted piece)**:
    *   Create an engaging title that reflects the `{key_takeaway_for_industry_professionals}` and would attract readers of the target magazine.
3.  **Introduction/Opening**:
    *   Start with a hook that highlights a real-world problem
 challenge
 or opportunity relevant to the industry and the `{key_takeaway_for_industry_professionals}`.
    *   Briefly introduce the core idea or finding from the `{academic_paper_section_text}` as a potential solution or important development.
4.  **Simplify Technical Jargon and Complex Explanations**:
    *   Translate highly academic or specialized terminology into more common engineering language.
    *   If a complex concept must be mentioned
 explain it concisely in simple terms
 perhaps using an analogy if appropriate.
    *   Break down long sentences and dense paragraphs.
5.  **Focus on Practical Implications and Applications**:
    *   Emphasize HOW the research/findings from `{academic_paper_section_text}` can be applied in the industry.
    *   What are the potential benefits
 efficiencies
 cost savings
 or new capabilities it could enable?
    *   Use bullet points or short case examples if they help illustrate practical points.
6.  **Results and Evidence (if applicable to the section)**:
    *   If the `{academic_paper_section_text}` includes results
 present them in a way that highlights their significance for practice. Focus on key outcomes rather than exhaustive data.
    *   Consider if simple charts or figures would normally be used here (though you will only output text
 you can describe what a figure would show).
7.  **Address the `{key_takeaway_for_industry_professionals}` Explicitly**:
    *   Ensure this key message is clearly conveyed and reinforced throughout the adapted article.
8.  **Conclusion/Outlook**:
    *   Summarize the main points from an industry perspective.
    *   Briefly discuss potential future developments or how this work might evolve into practical solutions or standards.
    *   End with a forward-looking statement or a call to consider the implications.

**Output Format:**
Plain text
 structured as a short article with clear paragraphs and potentially subheadings (which you should create).

**Example Transformation (Conceptual):**
    *   _Academic Tone_: "The novel quasi-resonant zero-voltage-switching topology presented herein demonstrates a quantifiable reduction in switching losses
 theoretically validated through state-plane analysis and corroborated by empirical evidence from a 1kW prototype operating at 2 MHz
 achieving a peak efficiency of 98.7%."
    *   _Industry Magazine Tone_: "Engineers are constantly battling switching losses in power converters. A new design approach
 using quasi-resonant techniques with zero-voltage switching
 is showing exciting promise. Researchers have developed a topology that significantly cuts these losses. In a 1kW prototype running at a challenging 2 MHz
 this new method boosted peak efficiency to an impressive 98.7%
 paving the way for more compact and cooler-running power supplies."

**IMPORTANT**: The adapted article must remain faithful to the technical essence of the `{academic_paper_section_text}` but make it much more digestible and relevant for industry practitioners.
							

AI Prompt to Adapt Report for Conference Intro

Salida: 

				
					You are an AI assistant specialized in academic writing for Electrical Engineering conferences.
**Objective:** Adapt an excerpt from a technical report to serve as a compelling introduction for a conference paper targeting a specific conference.

**Input Materials:**
- Technical Report Excerpt: `{technical_report_excerpt}` (Paste the text from the report that contains relevant background problem statement and motivation).
- Conference Name and Theme: `{conference_name_and_theme}` (e.g. 'IEEE Power & Energy Society General Meeting - Theme: Decarbonization and Grid Modernization').
- Conference Author Guidelines URL: `{conference_author_guidelines_url}` (Link to the specific conference's author guidelines page focusing on introduction structure word limits etc.).

**Task:**
1.  **Access and Review Guidelines:** Carefully review the author guidelines provided via the `{conference_author_guidelines_url}` particularly sections related to the introduction length focus and required elements.
2.  **Draft the Introduction:** Rewrite and restructure the `{technical_report_excerpt}` to create a conference paper introduction that:
    *   Clearly establishes the context and motivation for the research relevant to the `{conference_name_and_theme}`.
    *   States the problem being addressed and its significance.
    *   Briefly outlines the approach or contribution of the paper.
    *   Concludes with a roadmap of the paper (if customary for the conference).
    *   Adheres to any length constraints or specific structural advice from the guidelines.
3.  **Tone and Focus:** Ensure the tone is appropriate for a conference presentation (often more direct and concise than a technical report). Emphasize novelty and relevance to the conference audience.

**Output Format:**
Provide the drafted conference paper introduction as plain text.

**IMPORTANT:**
- The introduction MUST be tailored to the specific `{conference_name_and_theme}` and adhere to the `{conference_author_guidelines_url}`.
- If the guidelines are extensive summarize key constraints you adhered to before presenting the draft.
- The goal is to make the research accessible and engaging for conference attendees.
							

AI Prompt to GaN Power Device Trends Last 3 Years

Salida: 

				
					Act as a Semiconductor Industry Analyst specializing in Power Electronics.
Your TASK is to provide a summary of key advancements and application trends for Gallium Nitride (GaN) power semiconductor devices over approximately the last three years (from current date backward).
The review should cover `{specific_application_focus_or_all}` (e.g.
 'Data Center Power Supplies'
 'Electric Vehicle (EV) On-Board Chargers'
 'Consumer Electronics Fast Chargers'
 'LIDAR'
 or 'All Major Applications').
It should highlight progress in `{performance_metrics_of_interest_csv}` (e.g.
 'Figure_of_Merit_Ron_Q
Switching_Frequency_MHz
Voltage_Rating_V
Efficiency_Improvements_percent
Power_Density_W_cm3
Integration_Level_e.g._SoC_SiP').
Indicate if market adoption trends should be included via `{include_market_adoption_trends_boolean}` (True/False).
You MUST use live internet access to gather the latest information from reputable industry news
 technical journals
 conference proceedings
 and market research summaries.

**SUMMARY REPORT: GaN Power Device Trends (Last 3 Years)**

**1. Executive Summary:**
    *   Brief overview of GaN technology's trajectory in the last three years
 highlighting its growing importance in power electronics.
    *   Mention key drivers for adoption (e.g.
 efficiency
 power density
 cost reduction).

**2. Key Performance Metric Advancements (referencing `{performance_metrics_of_interest_csv}`):**
    *   **Figure of Merit (FOM
 e.g.
 R_on * Q_g)**: Discuss improvements in GaN device FOM
 leading to lower switching and conduction losses.
    *   **Switching Frequency**: Trends in achievable switching frequencies and how this impacts system size/passives.
    *   **Voltage Rating**: Availability of higher voltage GaN devices (e.g.
 650V
 900V
 1200V) and their impact on applications.
    *   **Efficiency Improvements**: Cite examples or typical improvements in converter/inverter efficiencies attributed to GaN.
    *   **Power Density**: How GaN is enabling significant increases in power density (W/volume or W/weight).
    *   **Integration Level**: Advancements in GaN ICs
 System-in-Package (SiP)
 or co-packaging with drivers/controllers.
    *   **Reliability & Robustness**: Progress made in understanding and improving GaN device reliability
 gate drive stability
 and short-circuit withstand capabilities.

**3. Application Area Developments (`{specific_application_focus_or_all}`):**
    *(If 'All Major Applications'
 cover 2-3 prominent ones. If specific
 focus on that.)*
    *   **[Application Area 1
 e.g.
 Consumer Fast Chargers]:**
        *   How GaN is impacting this area (e.g.
 smaller size
 higher power output).
        *   Notable product releases or design wins.
        *   Specific GaN device types being adopted.
    *   **[Application Area 2
 e.g.
 Data Center PSUs]:**
        *   Benefits of GaN (e.g.
 meeting 80 Plus Titanium/Platinum efficiency
 higher density for server racks).
        *   Challenges and solutions for GaN in this space.
    *   **[Application Area 3
 e.g.
 Automotive (EV OBCs
 DC/DC
 LiDAR)]:**
        *   GaN's role in improving EV range
 charging speed
 and system cost/weight.
        *   Qualification status and adoption by automotive OEMs.
        *   Use in LiDAR for autonomous driving.

**4. Key Technology & Manufacturing Trends:**
    *   Advancements in GaN-on-Si epitaxy and manufacturing processes leading to cost reduction and higher yields.
    *   Development of new device structures (e.g.
 vertical GaN
 novel gate structures).
    *   Improved packaging technologies for better thermal performance and lower inductance at high frequencies.

**5. Market Adoption and Commercialization (if `{include_market_adoption_trends_boolean}` is True):**
    *   Overview of market growth for GaN power devices.
    *   Key industry players (device manufacturers
 foundries).
    *   Price trends and competitiveness with Silicon MOSFETs and SiC devices.
    *   Major investments
 partnerships
 or acquisitions in the GaN space.

**6. Remaining Challenges and Future Outlook:**
    *   Persistent challenges (e.g.
 cost for some applications
 gate drive complexity
 long-term reliability data for newer applications
 thermal management at extreme power densities).
    *   Expected future developments and potential new markets for GaN technology in the next 3-5 years.

**Sources**: This review is based on publicly available industry reports
 technical publications
 and news articles from the last three years accessed via the internet.

**IMPORTANT**: The report should be well-structured
 factual
 and provide a balanced view. Cite specific examples or data points where possible (without needing formal citations
 e.g.
 "Company X announced a GaN IC achieving Y performance...").
							

AI Prompt to Critique EMI Shielding Experiment

Salida: 

				
					You are an AI assistant with expertise in Experimental Design and Electromagnetic Compatibility (EMC) for Electrical Engineers.
**Objective:** Critique a provided experimental plan for testing Printed Circuit Board (PCB) Electromagnetic Interference (EMI) shielding effectiveness and suggest improvements.

**Experimental Plan Details:**
- Experimental Setup Description: `{experimental_setup_description}` (Describe the test environment equipment used source of interference shield configuration device under test DUT).
- Measurement Parameters (CSV format): `{measurement_parameters_csv}` (Columns: ParameterName ValueUnit FrequencyRange Resolution). Example: 'ShieldingEffectiveness dB 20Hz-1GHz 1kHz'.
- Expected Results Summary: `{expected_results_summary}` (Briefly state what the experiment aims to demonstrate or measure e.g. 'Shielding effectiveness > 20dB across the specified frequency range').

**Task:**
Generate a critique of the experimental plan in MARKDOWN format. Your critique MUST cover:
1.  **Validity Assessment:**
    *   Does the setup accurately simulate real-world conditions or the intended application?
    *   Are the measurement parameters appropriate for assessing shielding effectiveness?
    *   Are there any uncontrolled variables that could affect the results?
2.  **Reliability Assessment:**
    *   Is the procedure detailed enough for repeatability?
    *   Are there sufficient data points or repetitions planned?
    *   What are the potential sources of measurement error and how can they be minimized?
3.  **Suggestions for Improvement:**
    *   Propose specific changes to the setup parameters or procedure to enhance validity reliability or efficiency.
    *   Suggest any missing control experiments or calibration steps.
    *   Comment on the interpretation of `{expected_results_summary}` and if the parameters can truly validate it.

**IMPORTANT:**
- Your critique should be constructive and provide actionable recommendations.
- Focus on best practices in EMC testing and experimental design for electrical engineering.
- Ensure the output is well-structured MARKDOWN.
							

AI Prompt to Seminal Patents in Wireless Power Transfer

Salida: 

				
					Act as a Patent Technology Scout specializing in Electrical Engineering innovations.
Your TASK is to identify and summarize key/seminal patents related to `{wpt_technology_focus}` (e.g.
 'Resonant Inductive Coupling for EV Charging'
 'Near-Field Capacitive WPT'
 'Microwave Power Beaming for Drones'
 'Ultrasonic WPT for Medical Implants').
Optionally
 filter by `{application_area_filter_optional}` (e.g.
 'Automotive'
 'Consumer Electronics'
 'Medical Devices'
 'Industrial Automation') if specified.
Aim to find approximately `{number_of_patents_to_find}` significant patents. This may include foundational patents or highly cited ones that introduced key concepts.
You MUST use live internet access to search patent databases (e.g.
 Google Patents
 USPTO
 Espacenet).

**PATENT IDENTIFICATION AND SUMMARY (Output as CSV String):**

**CSV Header**: `Patent_Number
Title
Publication_Date
Assignee_Original
Key_Inventors
Core_Innovation_Summary
Perceived_Impact_or_Significance
Patent_URL`

**Search and Analysis Process:**
1.  **Keyword Formulation**: Develop search queries based on `{wpt_technology_focus}`
 relevant technical terms
 and potentially `{application_area_filter_optional}`.
2.  **Database Search**: Query patent databases. Look for patents with early priority dates for foundational concepts
 or those with high citation counts
 or those frequently referenced in review articles on WPT.
3.  **Patent Review**: For promising candidates
 review the abstract
 claims (especially independent claims)
 and description to understand the core innovation.
4.  **Selection**: Select up to `{number_of_patents_to_find}` patents that appear most seminal or impactful based on their claims
 problem solved
 and influence (e.g.
 if they enabled a new product category or solved a major technical hurdle).

**Data Extraction for each selected patent:**
    *   **Patent Number**: (e.g.
 USXXXXXXX B2)
    *   **Title**: Full title of the patent.
    *   **Publication Date**: Date of grant or first major publication.
    *   **Assignee (Original)**: The company or institution it was originally assigned to.
    *   **Key Inventors**: List one or two primary inventors if easily identifiable.
    *   **Core Innovation Summary**: A concise (1-2 sentences) explanation of what the patent claims as its main invention in the context of `{wpt_technology_focus}`.
    *   **Perceived Impact or Significance**: Why is this patent considered important or seminal? (e.g.
 'Pioneered the use of coupled magnetic resonators for mid-range WPT'
 'Solved a key safety/efficiency issue'
 'Underpins many commercial WPT charging systems').
    *   **Patent URL**: A direct link to view the patent (e.g.
 Google Patents link).

**Example CSV Row (Conceptual):**
`US7741734B2
Wireless power transfer systems
2010-06-22
WiTricity Corporation
Kurs
 Andre; Karalis
 Aristeidis
Utilizes coupled resonant objects to efficiently transfer power over mid-range distances without direct contact
 a key enabler for resonant inductive WPT technology.
Seminal patent for mid-range resonant WPT
 heavily licensed and cited.
https://patents.google.com/patent/US7741734B2`

**IMPORTANT**: The selection of "seminal" can be subjective. Focus on patents that introduced foundational concepts or had a clear and demonstrable impact on the field of `{wpt_technology_focus}`. Provide direct URLs to the patent documents.
							
Scroll al inicio

También te puede interesar