Hogar » Las mejores indicaciones de IA para ingeniería mecánica

Las mejores indicaciones de IA para ingeniería mecánica

La IA impulsa la ingeniería mecánica
Ai ingeniería mecánica
Las herramientas basadas en la inteligencia artificial están revolucionando la ingeniería mecánica al mejorar la optimización del diseño, la velocidad de simulación, el mantenimiento predictivo y la selección de materiales mediante el análisis avanzado de datos y el reconocimiento de patrones.

Las herramientas de IA en línea están transformando rápidamente la ingeniería mecánica al aumentar las capacidades humanas en diseño, análisis, fabricacióny mantenimiento. Estos sistemas de IA pueden procesar grandes cantidades de datos, identificar patrones complejos y generar soluciones novedosas mucho más rápido que los métodos tradicionales. Por ejemplo, la IA puede ayudarle a optimizar el rendimiento y la fabricabilidad de los diseños, acelerar simulaciones complejas, predecir las propiedades de los materiales y automatizar una amplia gama de tareas analíticas.

Las indicaciones que se ofrecen a continuación ayudarán, por ejemplo, en el diseño generativo, acelerarán las simulaciones (FEA/CFD), ayudarán en el mantenimiento predictivo en el que la IA analiza los datos de los sensores de la maquinaria para prever posibles fallos, lo que permite un mantenimiento proactivo y minimiza el tiempo de inactividad, ayudarán en la selección de materiales y mucho más.

  • Dados los recursos del servidor y el tiempo, los propios avisos están reservados sólo a los miembros registrados, y no son visibles a continuación si no se ha iniciado sesión. Puede registrarse, 100% gratis: 

Membresía requerida

Debes ser miembro para acceder a este contenido.

Ver niveles de membresía

¿Ya eres miembro? Accede aquí

AI Prompt to Generador de resúmenes de reseñas bibliográficas

Esta instrucción le pide a la IA que resuma y sintetice una lista de documentos o artículos académicos relacionados con un tema de ingeniería mecánica proporcionado como una lista de títulos y resúmenes. Produce un resumen estructurado de la revisión bibliográfica.

Salida: 

				
					You are given a list of academic papers related to the mechanical engineering topic: {list_of_papers}. For each paper, summarize the key findings, methodologies, and relevance. Then synthesize the information into a coherent literature review section highlighting gaps, trends, and consensus. Use markdown formatting with headings, bullet points, and italicized paper titles. Provide citations in a consistent style.
							

AI Prompt to Revisión bibliográfica sobre avances materiales

Resume los avances recientes (últimos N años) en una clase específica de materiales centrándose en su aplicación en un área concreta de la ingeniería mecánica. Identifica las principales tendencias de investigación y las publicaciones más innovadoras. El resultado es un resumen en formato markdown.

Salida: 

				
					Act as a Materials Science Research Analyst specializing in Mechanical Engineering applications.
Your TASK is to conduct a concise literature review summarizing recent advancements in `{material_class_name}` with a focus on their application in `{application_area_focus}` over the past `{time_period_years}` years.
You MUST use live internet access to gather information from scholarly articles
 conference proceedings
 and reputable technical sources.

**1. Search Strategy and Information Gathering**:
    *   Define search keywords based on `{material_class_name}` (e.g.
 'High Entropy Alloys'
 'Self-healing Polymers'
 'Metal Matrix Composites'
 'Biodegradable Magnesium Alloys')
 `{application_area_focus}` (e.g.
 'aerospace structural components'
 'biomedical implants'
 'automotive lightweighting'
 'tribological coatings')
 and terms like 'advancements'
 'recent research'
 'trends'
 'review'.
    *   Query academic databases (like Google Scholar
 Scopus
 Web of Science if accessible through your tools) and leading publisher sites (e.g.
 Elsevier
 Springer
 Wiley
 Nature
 Science).
    *   Filter results to the last `{time_period_years}` years.
    *   Prioritize review articles
 highly cited research papers
 and significant breakthrough reports.

**2. Analysis and Synthesis**:
    *   **Identify Key Advancements**: What are the most significant improvements or new discoveries related to `{material_class_name}` in the context of `{application_area_focus}`? This could include:
        *   New processing or manufacturing techniques.
        *   Improved mechanical properties (strength
 toughness
 fatigue resistance
 wear resistance
 etc.).
        *   Enhanced functional properties (e.g.
 corrosion resistance
 thermal stability
 biocompatibility
 self-healing capabilities).
        *   Novel compositions or microstructures.
        *   Successful application examples or case studies.
    *   **Identify Research Trends**: What are the current hot topics or directions in research for this material-application combination?
    *   **Key Researchers/Institutions (Optional
 if prominent)**: Briefly mention any leading research groups if they consistently appear.
    *   **Seminal Publications (2-3 examples)**: Cite (author
 year
 title
 journal if possible
 or just a descriptive reference) a few highly impactful papers from the review period that exemplify these advancements.

**3. Output Format (Markdown)**:
    *   **Title**: Literature Review: Recent Advancements in `{material_class_name}` for `{application_area_focus}` (Last `{time_period_years}` Years).
    *   **1. Introduction**: Briefly introduce `{material_class_name}` and its importance in `{application_area_focus}`.
    *   **2. Key Advancements**: Use subheadings for different categories of advancements if logical
 or a narrative style. Be specific and provide examples.
    *   **3. Current Research Trends**: Summarize the dominant research directions.
    *   **4. Notable Publications**: List 2-3 key papers as described above.
    *   **5. Challenges and Future Outlook**: Briefly discuss any remaining challenges or potential future developments.
    *   **6. Sources Consulted (General Statement)**: Indicate that the review is based on publicly available scholarly literature and state if specific databases were primarily used if known by your tools.

**IMPORTANT**: The summary should be concise yet informative
 targeted at a mechanical engineer looking for an update on the topic. Ensure information is up-to-date by leveraging live internet search. Properly attribute information conceptually if not citing formally (e.g.
 'Research indicates...'
 'Studies have shown...').
							

AI Prompt to Herramienta de identificación de investigadores clave

Identifica y enumera investigadores o grupos de investigación clave y sus instituciones afiliadas muy activos en un nicho temático de la ingeniería mecánica. Esto ayuda a encontrar colaboradores expertos o bibliografía relevante. El resultado es una lista CSV.

Salida: 

				
					Act as a Research Intelligence Analyst specializing in mapping expertise in engineering fields.
Your TASK is to identify key researchers (or research groups) and their institutions who are highly active and influential in the `{niche_mechanical_engineering_topic}`. You should aim to provide `{number_of_results_desired}` distinct entries.
You MUST use live internet access to query academic search engines
 university research portals
 and publication databases.

**1. Search and Identification Strategy**:
    *   Formulate targeted search queries using keywords derived from `{niche_mechanical_engineering_topic}` (e.g.
 if topic is 'triboelectric nanogenerators for vibration energy harvesting'
 use these terms plus 'researcher'
 'professor'
 'publications'
 'lab').
    *   Utilize academic search engines (Google Scholar
 Semantic Scholar
 etc.) and potentially specific university/research institution websites.
    *   Look for indicators of significant contribution and activity:
        *   High number of relevant publications in reputable journals/conferences.
        *   High citation counts for relevant work.
        *   Principal Investigator (PI) status on relevant grants or projects.
        *   Keynote speaker invitations or leadership roles in relevant conferences/societies.
        *   Patents filed in the area.
    *   Prioritize individuals who have published consistently or significantly on the topic in recent years (e.g.
 last 5-10 years).

**2. Data Extraction and Formatting**:
    *   For each identified key researcher/group
 try to find:
        *   Full Name of the lead researcher (if an individual) or Research Group Name.
        *   Primary Affiliated Institution (University
 Research Institute).
        *   Department or Lab (if readily available).
        *   A key publication or a very brief summary of their focus within the `{niche_mechanical_engineering_topic}` (e.g.
 'Focus on material development for TENGs' or a specific highly cited paper title).
        *   (Optional but helpful) A URL to their official profile or lab page if easily found.

**3. Output Format (CSV)**:
    *   You MUST return the results as a single CSV string.
    *   The CSV header row MUST be: `Rank
Researcher_Or_Group_Name
Affiliated_Institution
Department_Or_Lab
Focus_Or_Key_Publication
Profile_URL`
    *   Populate the table with up to `{number_of_results_desired}` entries
 ranked roughly by perceived influence or activity if possible (this is subjective
 so best effort is fine
 or simply list them). If ranking is hard
 'Rank' can be a simple serial number.
    *   If some information (e.g.
 Department
 Profile_URL) is not easily found
 leave that cell blank in the CSV row but maintain comma separators.

    Example of a CSV row:
    `1
Prof. John Doe
Massachusetts Institute of Technology
Dept. of Mechanical Engineering
Pioneering work on XYZ sensors
http://mit.edu/johndoe`

**IMPORTANT**: The quality of results depends on effective searching and interpretation of academic output. Prioritize relevance to the `{niche_mechanical_engineering_topic}`. State that the list is based on publicly available information accessed at the time of the query.
							

AI Prompt to Metodología de diseño Análisis de la evolución

Analiza y esboza la evolución histórica, los hitos clave y las tendencias actuales de una metodología o filosofía de diseño mecánico específica. Esto ayuda a los ingenieros a comprender el contexto y los avances en los enfoques de diseño. El resultado es una narración en formato markdown o una línea de tiempo.

Salida: 

				
					Act as an Engineering Design Historian and Theorist.
Your TASK is to analyze and outline the evolution of the mechanical design methodology known as `{design_methodology_name}`
 starting from approximately `{approximate_start_year_or_era}` to the present day.
You should use live internet access to research its history
 key proponents
 seminal publications/tools
 and current trends.

**1. Research and Information Gathering**:
    *   Use `{design_methodology_name}` (e.g.
 'Design for Six Sigma (DFSS)'
 'Axiomatic Design'
 'TRIZ (Theory of Inventive Problem Solving)'
 'Robust Design (Taguchi Methods)'
 'Topology Optimization') and terms like 'history'
 'evolution'
 'key developments'
 'timeline'
 'impact' in your searches.
    *   Consult scholarly articles
 books
 historical accounts
 and reputable engineering resources.
    *   Identify:
        *   Origins and foundational concepts/principles.
        *   Key individuals or organizations that developed or promoted the methodology.
        *   Significant milestones
 publications
 or software tools that marked turning points.
        *   How the methodology has been adapted or integrated with other approaches over time.
        *   Its impact on mechanical engineering practice.
        *   Current trends
 criticisms
 or areas of ongoing development related to it.

**2. Structuring the Analysis (Output as Markdown)**:
    You can choose a chronological narrative or a timeline-based structure. Ensure the following aspects are covered:
    *   **Title**: The Evolution of `{design_methodology_name}` in Mechanical Engineering.
    *   **1. Introduction**: Briefly define `{design_methodology_name}` and state its core objectives.
    *   **2. Origins and Early Development (around `{approximate_start_year_or_era}` and following period)**:
        *   Describe the context or problems that led to its development.
        *   Mention key founders/pioneers and their initial contributions.
    *   **3. Key Milestones and Expansion**:
        *   Detail significant developments
 theoretical refinements
 or practical breakthroughs in chronological order or by thematic progression.
        *   Mention any influential books
 papers
 or case studies that popularized or validated the methodology.
        *   Discuss the development of associated tools or software
 if applicable.
    *   **4. Mainstream Adoption and Impact**:
        *   When and how did it gain wider acceptance in industry and academia?
        *   What has been its primary impact on how mechanical design is approached or taught?
    *   **5. Current Status
 Trends
 and Criticisms**:
        *   How is `{design_methodology_name}` viewed or used today?
        *   Are there new interpretations
 integrations with digital tools (e.g.
 AI
MBSE)
 or extensions of the methodology?
        *   Are there any common criticisms or limitations discussed in the literature?
    *   **6. Future Outlook**:
        *   Brief speculation on its future trajectory or relevance.

**IMPORTANT**: The analysis should be insightful and provide a good historical overview for a mechanical engineer. Focus on conceptual evolution and practical impact. Ensure information is corroborated from reliable sources accessed via the internet.
							

AI Prompt to Identificación de lagunas de conocimiento a partir de resúmenes

Identifica posibles lagunas de conocimiento o áreas para futuras investigaciones dentro de un ámbito específico de la ingeniería mecánica mediante el análisis de una colección de resúmenes de investigaciones recientes. Esto ayuda a los investigadores a identificar nuevas preguntas de investigación. El resultado es una lista markdown.

Salida: 

				
					Act as a Research Strategist with expertise in identifying emerging research fronts in Mechanical Engineering.
Your TASK is to analyze a `{collection_of_abstracts_text}` from recent research within the `{research_area_description_text}` and identify potential knowledge gaps
 unanswered questions
 or underexplored aspects that could suggest avenues for future research.

**1. Input Processing**:
    *   `{research_area_description_text}`: A clear description of the specific field or sub-field of mechanical engineering (e.g.
 'Additive Manufacturing of Nickel Superalloys for High-Temperature Applications'
 'Vibration Damping using Metamaterials in Rotating Machinery'
 'Machine Learning for Predictive Maintenance of Hydraulic Systems').
    *   `{collection_of_abstracts_text}`: A single block of text containing multiple research paper abstracts (e.g.
 5-10 abstracts). Each abstract should be clearly demarcated if possible
 or just concatenated.

**2. Analysis Methodology**:
    *   **Thematic Analysis**: Read through all abstracts to understand the main themes
 methodologies
 and findings being reported in the `{research_area_description_text}`.
    *   **Identify Common Focus Areas**: What specific problems
 materials
 techniques
 or applications are frequently addressed?
    *   **Look for Limitations Stated**: Do any abstracts explicitly mention limitations of their own work
 or suggest future work? These are direct pointers to gaps.
    *   **Note Unaddressed Intersections**: Are there logical connections between sub-topics that don't seem to be explored? (e.g.
 if one abstract discusses material A for application X
 and another discusses material B for application X
 is the comparison between A and B for X a gap?).
    *   **Consider Unexplored Parameters or Conditions**: Are studies typically focused on a narrow range of conditions
 materials
 or scales? What happens outside these ranges?
    *   **Methodological Gaps**: Are certain advanced methodologies (e.g.
 novel simulation techniques
 AI/ML approaches
 new experimental methods) not yet widely applied in this area despite potential benefits?
    *   **Contradictory or Inconclusive Findings**: Do any abstracts present conflicting results or highlight areas where findings are still inconclusive?
    *   **Assumptions and Simplifications**: What common assumptions are made that might not hold true in all scenarios
 suggesting a need for more complex models or experiments?

**3. Output Format (Markdown)**:
    *   **Title**: Potential Knowledge Gaps and Future Research Directions in `{research_area_description_text}` (Based on Provided Abstracts).
    *   **1. Overview of Current Research Focus**: Briefly summarize the dominant themes identified in the provided abstracts.
    *   **2. Identified Potential Knowledge Gaps / Research Questions**: This is the main section. List each potential gap or research question as a clear
 concise bullet point. For each point
 briefly explain the reasoning based on your analysis of the abstracts. Examples:
        *   `*   **The long-term performance of [Material X] under cyclic thermal loading combined with [Environmental Factor Y] appears underexplored.** While abstracts A and B discuss thermal performance
 and abstract C mentions Factor Y independently
 their combined effect is not addressed.`
        *   `*   **Comparative analysis of [Technique 1] vs. [Technique 2] for achieving [Specific Outcome Z] is lacking.** Abstracts D and E advocate for different techniques but no direct comparison of efficacy or cost-effectiveness was found.`
        *   `*   **Most studies focus on [Specific Scale/Condition A]
 leaving a gap in understanding behavior at [Different Scale/Condition B].** This is evident as abstracts F
 G
 H all operate within Condition A.`
    *   **3. Concluding Remarks**: Briefly reiterate the value of exploring these gaps.

**IMPORTANT**: The identified gaps MUST be logically derived from the content of the `{collection_of_abstracts_text}` and the context of `{research_area_description_text}`. Avoid speculating wildly beyond the provided information. The output should stimulate critical thinking for new research.
							

AI Prompt to FMEA Table Generation for Subsystem

Generates a template for a Failure Modes and Effects Analysis (FMEA) for a specified mechanical subsystem listing potential failure modes causes effects and recommending initial severity occurrence and detection ratings. This jumpstarts the risk assessment process. Output is a CSV table structure.

Salida: 

				
					Act as a Reliability Engineer specializing in FMEA for Mechanical Systems.
Your TASK is to generate a structured FMEA table (as a CSV string) for the `{subsystem_name_and_function}`
 considering its `{key_components_list_csv}` and `{operating_environment_description}`. You should populate the table with common
 plausible failure modes
 causes
 and effects
 and suggest initial placeholder RPN ratings or qualitative assessments.

**1. Input Analysis**:
    *   `{subsystem_name_and_function}`: Clear description (e.g.
 'Fuel Pumping Unit for Diesel Engine - delivers pressurized fuel to injectors'
 'Landing Gear Retraction Actuator - hydraulic cylinder that retracts/deploys landing gear').
    *   `{key_components_list_csv}`: CSV string listing major components within the subsystem (e.g.
 'Pump_Housing
Electric_Motor
Impeller
Pressure_Regulator
Seals
Bearings').
    *   `{operating_environment_description}`: Details of operational context (e.g.
 'Automotive under-hood
 -40C to 120C
 high vibration
 exposure to fuel/oil'; 'Aerospace
 high cycle fatigue
 wide temperature range
 safety-critical').

**2. FMEA Table Generation Logic**: For each key component in `{key_components_list_csv}` (or for the subsystem as a whole
 focusing on its functions):
    *   **Identify Potential Failure Modes**: What are common ways this component or function can fail? (e.g.
 For a pump: 'Fails to deliver pressure'
 'Leaks'
 'Noisy operation'
 'Seizure'. For a motor: 'Fails to start'
 'Overheats'
 'Excessive vibration').
    *   **Identify Potential Causes**: For each failure mode
 list plausible causes (e.g.
 For pump 'Fails to deliver pressure': 'Impeller wear'
 'Motor failure'
 'Blocked inlet'
 'Internal leakage'). Consider material degradation
 wear and tear
 manufacturing defects
 operational errors
 environmental factors from `{operating_environment_description}`.
    *   **Identify Potential Effects**: For each failure mode
 what are the consequences on the subsystem
 the larger system
 and the end-user/environment? (e.g.
 For pump 'Fails to deliver pressure': 'Engine stalls (system effect)'
 'Vehicle stranded (end-user effect)'
 'Loss of mission (aerospace context)').
    *   **Current Controls (Prevention/Detection)**: Suggest typical preventative controls (design features
 manufacturing tests) or detection controls (sensors
 inspection methods) that might be in place. If none obvious
 state 'None Assumed' or 'To be determined'.
    *   **Assign Initial S-O-D Ratings (Severity
 Occurrence
 Detection)**: Use a 1-10 scale (10 being worst for S/O
 10 being worst/hardest for D). These are INITIAL ESTIMATES to be reviewed by the engineering team.
        *   Severity (S): Based on the worst potential effect.
        *   Occurrence (O): Likelihood of the cause occurring. Consider `{operating_environment_description}`.
        *   Detection (D): Likelihood of detecting the cause or failure mode before it has a major effect
 based on current controls.
    *   **Calculate RPN (Risk Priority Number)**: S x O x D.
    *   **Recommended Actions (Placeholder)**: Initially can be 'Investigate further'
 'Consider design change'
 'Improve detection method' or leave blank for team input.

**3. Output Format (CSV String)**:
    *   The CSV header MUST be: `Item_Or_Function
Potential_Failure_Mode
Potential_Effect_of_Failure
Severity_S
Potential_Cause_of_Failure
Occurrence_O
Current_Design_Controls_Prevention
Current_Design_Controls_Detection
Detection_D
RPN
Recommended_Actions`
    *   Each row will represent one failure mode.
    *   Example row snippet (conceptual):
    `Electric_Motor
Fails_to_start
Subsystem_inoperable
Engine_does_not_start
Vehicle_stranded
8
Open_circuit_in_winding
Corrosion_due_to_environment
4
Visual_inspection_at_assembly
None_during_operation
7
224
Review_winding_protection
Consider_sealed_unit`

**IMPORTANT**: This FMEA is a STARTER TEMPLATE. The AI should populate it with plausible
 common mechanical failure scenarios. The ratings are subjective and for initial discussion by the engineering team. Emphasize that this output needs thorough review and validation by experts familiar with the specific design.
							

AI Prompt to Manufacturing Cell Hazard Identification

Identifies potential safety hazards in a new or modified manufacturing cell layout based on its description processes and human interaction points. This helps in proactively addressing safety concerns during the design phase. Output is a categorized markdown list.

Salida: 

				
					Act as a Manufacturing Safety Engineer.
Your TASK is to identify potential safety hazards for a new or modified manufacturing cell
 based on the `{cell_layout_description}`
 the `{processes_involved_list_csv}`
 and the specified `{human_interaction_points_text}`.
You should categorize hazards for clarity.

**1. Input Analysis**:
    *   `{cell_layout_description}`: A textual description of the cell's physical layout
 including major equipment (e.g.
 'Robotic arm'
 'CNC machine'
 'Conveyor belt'
 'Assembly station'
 'Parts bins')
 and their relative positions. If it's from a sketch
 user describes the sketch.
    *   `{processes_involved_list_csv}`: CSV string listing the manufacturing processes occurring within the cell (e.g.
 'Welding
Material_handling
Machining
Automated_inspection
Manual_assembly').
    *   `{human_interaction_points_text}`: Description of where
 when
 and how human operators interact with the cell (e.g.
 'Loading raw materials at Station A'
 'Unloading finished parts from conveyor at Station B'
 'Performing maintenance on CNC machine'
 'Clearing jams in robot gripper'
 'Supervising automated processes').

**2. Hazard Identification Methodology**: Based on the inputs
 systematically consider different types of hazards. For each identified hazard
 briefly note its potential consequence.
    *   **Mechanical Hazards**: From moving parts
 robots
 machinery.
        *   Crushing
 shearing
 cutting
 entanglement
 impact (e.g.
 robot arm movement
 machine tool operation
 conveyor pinch points
 falling objects).
    *   **Electrical Hazards**: From power supplies
 wiring
 control panels.
        *   Shock
 burns
 arc flash.
    *   **Thermal Hazards**: From hot processes or components.
        *   Burns from welding
 heated tooling
 hot parts.
    *   **Ergonomic Hazards**: From workstation design
 manual handling
 repetitive tasks at `{human_interaction_points_text}`.
        *   Musculoskeletal disorders
 strain.
    *   **Process-Specific Hazards**: Related to the `{processes_involved_list_csv}`.
        *   Welding: Fumes
 UV radiation
 fire.
        *   Machining: Flying chips
 coolant exposure
 tool breakage.
        *   Material Handling: Dropped loads
 collisions with automated guided vehicles (if any).
    *   **Automation-Related Hazards**: Especially concerning robotics or automated machinery.
        *   Unexpected robot movement
 programming errors
 sensor failures leading to incorrect actions
 trapping points between robot and fixed structures.
    *   **Trip
 Slip
 and Fall Hazards**: From cables
 spills
 uneven surfaces within the cell layout.
    *   **Chemical Hazards (if applicable)**: From coolants
 lubricants
 cleaning agents
 process byproducts.
    *   **Noise Hazards**: From machinery
 pneumatic systems.

**3. Output Format (Markdown)**:
    *   **Title**: Potential Safety Hazards for Manufacturing Cell: `{cell_layout_description (brief title form)}`
    *   **Introduction**: Briefly state the purpose of the hazard identification.
    *   **Hazard Categories (use H3 or H4 headings for each category below)**:
        *   **Mechanical Hazards**
            *   `- [Hazard 1]: Brief description
 e.g.
 Robot arm collision with operator at loading station. Potential Consequence: Impact injury
 crushing.`
            *   `- [Hazard 2]: ...`
        *   **Electrical Hazards**
            *   `- [Hazard 1]: ...`
        *   **Thermal Hazards**
            *   `- [Hazard 1]: ...`
        *   **(And so on for all relevant categories listed in step 2)**
    *   **Specific Considerations for Human Interaction Points**:
        *   Highlight hazards particularly relevant at the points mentioned in `{human_interaction_points_text}`.
    *   **General Recommendations (Brief)**:
        *   Suggest general next steps
 e.g.
 'Conduct detailed risk assessment for each identified hazard.'
 'Consider hierarchy of controls (elimination
 substitution
 engineering controls
 administrative
 PPE).'

**IMPORTANT**: The list should be comprehensive but focused on PLAUSIBLE hazards given the inputs. The AI is not performing a full risk assessment
 just identifying potential hazards for further investigation. Encourage a systematic approach.
							

AI Prompt to Mitigation Strategies for Vibration Failures

Suggests and elaborates on potential mitigation strategies for vibration-induced failures in specified mechanical equipment given a summary of vibration data and any current attempts. This helps engineers find solutions to improve reliability. Output is a markdown list.

Salida: 

				
					Act as a Vibration Analysis and Reliability Engineering Consultant.
Your TASK is to propose and elaborate on potential mitigation strategies for vibration-induced failures in the `{equipment_description_text}`
 considering the `{vibration_data_summary_text}` and any `{current_mitigation_attempts_text}`.
You should suggest a range of solutions
 from simple to more complex.

**1. Input Analysis**:
    *   `{equipment_description_text}`: Description of the affected equipment and its function (e.g.
 'Centrifugal pump
 Model XYZ
 used for cooling water circulation'
 'Large industrial fan mounted on steel frame'
 'Pipeline section experiencing flow-induced vibration').
    *   `{vibration_data_summary_text}`: Key characteristics of the problematic vibration (e.g.
 'High amplitude at 1x rotational speed (unbalance)'
 'Dominant frequency matches nearby machine's operating speed (external source)'
 'Broadband random vibration with peaks near structural resonances'
 'Flow-induced vibration at 50-60 Hz'). Include specific frequencies and amplitudes if known.
    *   `{current_mitigation_attempts_text}`: What
 if anything
 has already been tried and its outcome (e.g.
 'Attempted balancing
 reduced vibration by 20% but still too high'
 'Added stiffeners to frame
 shifted resonance but problem persists at new frequency'
 'None attempted yet').

**2. Mitigation Strategy Brainstorming & Elaboration**: Based on the inputs
 propose several distinct strategies. For each strategy:
    *   **Strategy Name/Type**: (e.g.
 Source Modification
 Path Interruption
 System Modification
 Damping Treatment).
    *   **Specific Action(s)**: Detail the concrete steps or changes involved.
    *   **Principle of Operation**: Explain HOW this strategy reduces vibration or its effects in the context of the `{vibration_data_summary_text}`.
    *   **Applicability/Suitability**: How well does this strategy address the likely root cause suggested by the vibration data? (e.g.
 If unbalance is indicated
 balancing is highly applicable).
    *   **Potential Pros**: Advantages of this approach.
    *   **Potential Cons/Challenges**: Disadvantages
 cost
 complexity
 potential side effects.
    *   **Consideration given `{current_mitigation_attempts_text}`**: How does this build upon or differ from what was already tried?

    **Categories of Strategies to Consider (examples
 tailor to the problem)**:
    *   **Source Treatment**:
        *   Balancing (for rotating machinery).
        *   Alignment (for coupled machines).
        *   Modifying operating speed to avoid resonance.
        *   Reducing fluid flow velocity or changing flow path (for FIV).
    *   **Path Treatment**:
        *   Isolation: Using resilient mounts (elastomeric
 spring isolators) to decouple the source from the receiver.
        *   Barriers: Enclosures for noise/vibration.
    *   **System Response Modification**:
        *   Stiffening: Adding braces or gussets to shift natural frequencies away from excitation frequencies.
        *   Mass Addition: Adding mass to shift natural frequencies.
        *   Damping: 
            *   Applied Damping Treatments (e.g.
 viscoelastic layers
 constrained layer damping).
            *   Tuned Mass Dampers (TMDs) for specific problematic frequencies.
        *   Active Vibration Control (more complex
 using sensors
 actuators
 and controllers).

**3. Output Format (Markdown)**:
    *   **Title**: Vibration Mitigation Strategies for `{equipment_description_text}`.
    *   **1. Summary of Vibration Problem**: Briefly restate the core issue based on inputs.
    *   **2. Proposed Mitigation Strategies**: For each strategy:
        *   `### Strategy X: [Strategy Name/Type]`
            *   `**Specific Actions:**`
            *   `**Principle of Operation:**`
            *   `**Applicability/Suitability:**`
            *   `**Potential Pros:**`
            *   `**Potential Cons/Challenges:**`
            *   `**Relation to Previous Attempts:**`
    *   **3. General Recommendations & Next Steps**: Suggest a logical approach to selecting and implementing strategies (e.g.
 'Start with source treatment if possible'
 'Consider simulation or modal analysis to predict effectiveness of structural modifications'
 'Implement incrementally and monitor results').

**IMPORTANT**: The strategies should be technically sound and relevant to the described problem. The AI should aim to provide a range of options suitable for different levels of complexity and cost.
							

AI Prompt to Comprobación del cumplimiento de la seguridad en el diseño de máquinas

Evalúa las características del diseño de una máquina comparándolas con fragmentos proporcionados por el usuario de las cláusulas pertinentes de las normas de seguridad para identificar posibles áreas de incumplimiento. Esto ayuda a diseñar máquinas más seguras desde el principio. El resultado es una lista de comprobación.

Salida: 

				
					Act as a Machinery Safety Specialist with expertise in CE Marking/OSHA compliance (or general machinery safety principles).
Your TASK is to perform a preliminary safety compliance check of the described `{machine_design_features_description_text}` against the provided `{safety_standard_clauses_text}`. Consider the general safety expectations for the `{country_of_operation_for_context}` if it influences interpretation (e.g. EU vs USA).

**1. Input Analysis**:
    *   `{machine_design_features_description_text}`: A textual description of the machine's key design features
 safety components (guards
 E-stops
 interlocks)
 operational modes
 and human interaction points.
    *   `{safety_standard_clauses_text}`: Text containing specific clauses or requirements excerpted from relevant safety standard(s) (e.g.
 snippets from ISO 12100
 ISO 13849-1
 IEC 60204-1
 or specific Type-C standards). The user provides these excerpts.
    *   `{country_of_operation_for_context}`: The intended country or region of operation (e.g.
 'European Union'
 'USA'
 'China')
 as general safety philosophies can differ.

**2. Compliance Check Methodology**: For EACH provided clause in `{safety_standard_clauses_text}`:
    *   **Understand Clause Requirement**: Interpret the main safety objective or requirement of the clause.
    *   **Compare with Design Features**: Assess the `{machine_design_features_description_text}` against this specific requirement.
        *   Does the design appear to meet the requirement?
        *   Are there features that clearly violate or contradict the requirement?
        *   Is there insufficient information in the design description to make a judgment?
    *   **Identify Potential Gaps or Non-Compliances**: Clearly state where the design may fall short.
    *   **Suggest Areas for Improvement or Verification**: What specific aspects of the design should be reviewed
 modified
 or further documented to ensure compliance with this clause?

**3. Output Format (Markdown)**:
    *   **Title**: Preliminary Safety Compliance Check: [Machine Name/Type from description] vs. Provided Standard Clauses.
    *   **Context**: Machine intended for operation in: `{country_of_operation_for_context}`.
    *   **Compliance Checklist**: For each clause provided by the user:
        *   `---`
        *   `**Clause Reference:** [Quote or clearly reference the clause from {safety_standard_clauses_text}]`
        *   `**Clause Summary/Objective:** [Your brief interpretation of what the clause aims to achieve]`
        *   `**Assessment against Machine Design ({machine_design_features_description_text}):**`
            *   `  - **Compliance Status:** [Compliant / Potentially Non-Compliant / Insufficient Information / Partially Compliant]`
            *   `  - **Observations/Reasoning:** [Explain your assessment based on the design features. Be specific.]`
            *   `  - **Potential Gaps Identified (if any):**`
                *   `    - Gap 1: ...`
                *   `    - Gap 2: ...`
            *   `  - **Recommendations/Questions for Design Team:**`
                *   `    - Recommendation 1: e.g.
 'Verify guard opening sizes against EN ISO 13857 for this hazard zone.'`
                *   `    - Question 1: e.g.
 'Is the emergency stop a Category 0 or Category 1 stop as per IEC 60204-1?'`
    *   `---`
    *   **Overall Disclaimer**: `This is a preliminary assessment based SOLELY on the provided design description and standard excerpts. A full compliance assessment requires a detailed review of the complete machine
 its documentation
 a full risk assessment
 and consultation of the complete unabridged standards.`

**IMPORTANT**: The AI is NOT certifying compliance. It is identifying potential areas of concern or questions based on a limited comparison. The assessment should be objective and constructive
 aiming to help the design team improve safety. If a clause is very complex or requires deep domain-specific knowledge not available
 it's okay to state that a specialist review is needed for that point.
							

AI Prompt to Evaluación ética de riesgos en proyectos mecánicos

Este ejercicio guía a la IA para que analice los riesgos éticos y las consecuencias sociales de un proyecto específico de ingeniería mecánica, teniendo en cuenta factores medioambientales, de seguridad y de impacto social. Requiere una descripción detallada del proyecto y la aplicación prevista para proporcionar una evaluación estructurada de los riesgos éticos con recomendaciones de medidas de mitigación.

Salida: 

				
					Analyze the following mechanical engineering project for potential ethical risks and societal consequences. The project description is: {project_description}. The intended application is: {intended_application}. Please provide a detailed ethical risk assessment that includes: 1) Identification of possible environmental impacts 2) Safety concerns for users and communities 3) Social and economic consequences 4) Recommendations for mitigating identified risks. Format your response using clear headings and bullet points for each section. Capitalize important keywords and use markdown for readability.
							
Tabla de contenido
    Añadir una cabecera para empezar a generar el índice

    ¿DISEÑO o RETO DE PROYECTO?
    Ingeniero Mecánico, Gerente de Proyectos o de I+D
    Desarrollo eficaz de productos

    Disponible para un nuevo desafío a corto plazo en Francia y Suiza.
    Contáctame en LinkedIn
    Productos de plástico y metal, Diseño a coste, Ergonomía, Volumen medio a alto, Industrias reguladas, CE y FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 Clase II y III médica

    Buscamos un nuevo patrocinador

     

    ¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
    > Envíanos un mensaje <

    Recibe todos los artículos nuevos
    Gratuito, sin spam, correo electrónico no distribuido ni revendido.

    o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

    Temas tratados: preguntas de prueba, validación, introducción de datos por el usuario, recogida de datos, mecanismo de retroalimentación, pruebas interactivas, diseño de encuestas, pruebas de usabilidad, evaluación de software, diseño experimental, evaluación del rendimiento, cuestionario, ISO 9241, ISO 25010, ISO 20282, ISO 13407 e ISO 26362...

    1. Wynter

      ¿Estamos asumiendo que la IA siempre puede generar las mejores indicaciones en ingeniería mecánica? ¿Cómo se generan?

    2. Giselle

      ¿Hará la IA innecesarios a los ingenieros humanos?

    Deja un comentario

    Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

    Publicaciones relacionadas

    Scroll al inicio

    También te puede interesar