» 伦纳德-琼斯潜力

伦纳德-琼斯潜力

1924
  • John Lennard-Jones
Laboratory scene with scientist performing molecular dynamics simulations using Lennard-Jones potential.

A simple, widely used mathematical model that approximates the potential energy of interaction between two neutral atoms or molecules. It combines a long-range attractive term ([latex]\propto r^{-6}[/latex]) representing Van der Waals forces with a steep, short-range repulsive term ([latex]\propto r^{-12}[/latex]) representing Pauli repulsion. The formula is [latex]V_{LJ}(r) = 4\epsilon [(\frac{\sigma}{r})^{12} – (\frac{\sigma}{r})^6][/latex].

The Lennard-Jones potential is a cornerstone of computational physics and chemistry due to its simplicity and effectiveness in capturing the essential physics of atomic interactions. The potential describes two main features. The attractive part, [latex]-(\frac{\sigma}{r})^6[/latex], models the 伦敦色散力, which dominates at medium to long ranges. The [latex]r^{-6}[/latex] dependence is theoretically justified for the interaction between two induced dipoles. The repulsive part, [latex]+(\frac{\sigma}{r})^{12}[/latex], models the strong repulsion that occurs when two atoms get very close and their electron clouds begin to overlap. This repulsion is a consequence of the Pauli exclusion principle. The [latex]r^{-12}[/latex] form was chosen primarily for computational convenience (as the square of the [latex]r^{-6}[/latex] term), though it provides a reasonable approximation of the steep repulsive wall.

The two parameters in the model have clear physical meanings: [latex]\epsilon[/latex] (epsilon) is the depth of the potential well, representing the strength of the attraction, and [latex]\sigma[/latex] (sigma) is the distance at which the potential energy is zero, representing the effective diameter of the atom. Despite being an approximation, the Lennard-Jones potential is remarkably successful at predicting the properties of simple, nonpolar substances and serves as a fundamental building block for more complex force fields used to simulate proteins, polymers, and other materials.

UNESCO Nomenclature: 2202
– Atomic and molecular physics

类型

数学模型

中断

基础

使用方法

广泛使用

前体

  • 范德华力理论(基森, 德拜, 伦敦)
  • 量子力学中的泡利不相容原理
  • 米氏势,原子间势的更一般形式
  • 早期关于真实气体状态方程的研究

应用

  • 简单流体、固体和气体的分子动力学 (MD) 和蒙特卡罗 (MC) 模拟
  • 用于开发力场的计算化学和材料科学
  • 造型 热力学 氩等物质的性质和相图
  • 为物理教育中的原子间作用力提供基本模型

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: Lennard-Jones potential, molecular dynamics, potential energy, intermolecular force, Pauli repulsion, Van der Waals, computational chemistry, simulation, force field, argon.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢