Casa » Von Mises Yield Criterion

Von Mises Yield Criterion

1913
  • Richard von Mises
  • Maksymilian Tytus Huber

The von Mises yield criterion predicts that yielding of a ductile material begins when the second deviatoric stress invariant, [latex]J_2[/latex], reaches a critical value. It is often expressed in terms of the von Mises stress, [latex]\sigma_v[/latex], a scalar value that must be less than the material’s yield strength, [latex]\sigma_y[/latex]. Yielding occurs when [latex]\sigma_v = \sigma_y[/latex].

The von Mises yield criterion, also known as the maximum distortion energy criterion, is a widely used model for predicting the onset of plastic deformation in ductile materials. It postulates that yielding begins when the elastic strain energy of distortion per unit volume in a material reaches a critical value. This is distinct from the hydrostatic energy (associated with volume change), which is assumed not to contribute to yielding in ductile metals.

Mathematically, this is equivalent to stating that the second invariant of the deviatoric stress tensor, [latex]J_2[/latex], reaches a constant value. The deviatoric stress tensor is the total stress tensor minus its hydrostatic component. The criterion is often expressed through the von Mises equivalent stress, [latex]\sigma_v[/latex], which is a scalar combination of the six components of the stress tensor. For a general 3D state of stress, it is calculated as: [latex]\sigma_v = \sqrt{\frac{1}{2}[(\sigma_{11}-\sigma_{22})^2 + (\sigma_{22}-\sigma_{33})^2 + (\sigma_{33}-\sigma_{11})^2 + 6(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2)]}[/latex].

Yielding is predicted to occur when [latex]\sigma_v[/latex] equals the material’s yield strength, [latex]\sigma_y[/latex], which is typically determined from a simple uniaxial tensile test. In principal stress space, the von Mises criterion defines a smooth, circular cylinder whose axis is the hydrostatic line ([latex]\sigma_1 = \sigma_2 = \sigma_3[/latex]). This contrasts with the Tresca criterion, which defines a hexagonal prism. The von Mises criterion generally provides a better fit with experimental data for most ductile metals and is continuously differentiable, which is advantageous in numerical computations.

UNESCO Nomenclature: 2208
– Mechanics

Tipo

Abstract System

Disruption

Substantial

Utilizzo

Widespread Use

Precursors

  • Beltrami’s total strain energy theory
  • Huber’s earlier formulation of the distortion energy concept
  • Development of the Cauchy stress tensor
  • Experimental observations of yielding in ductile metals

Applicazioni

  • predicting failure in ductile materials like steel and aluminum in mechanical and civil engineering
  • finite element analysis (FEA) to visualize and assess stress concentrations
  • design of pressure vessels and piping systems
  • automotive component design for durability and crash safety

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: von Mises stress, yield criterion, plasticity, ductile materials, failure theory, deviatoric stress, distortion energy, J2 plasticity

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti